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CHAPTER 1

Introduction

“build it, and you understand it.” John Hopfield

1.1 Parkinson’s disease

In 1817 a British surgeon named James Parkinson described in ‘An Essay on the

Shaking Palsy’ a disease called ‘paralysis agitans’ in which a patient experiences

muscle weakness and involuntary movements (tremor). He was the first to formally

describe this disease that would later be renamed as Parkinson’s disease (PD). How-

ever, the description of ‘paralysis agitans’ by Parkinson did not bring forward the

recognition of its pathological origin. This became clear in the 1950’s. PD results

from degeneration of neurons in a region of the brain known as the basal ganglia.

This part of the brain is involved in movement control. In particular, neurons in the

substantia nigra pars compacta (SNc) are degenerated. These neurons project to the

striatum and hence their degeneration leads to a shortage of the signaling molecule

(neurotransmitter) dopamine in the main input structure of the basal ganglia, caus-

ing movement impairments that are characteristic for the disease.

The number of people living with PD worldwide in 2005 is estimated to lie be-

tween 4.1 and 4.6 millon and it is estimated that this number will reach 8.7 to 9.3

million by 2030 due to the increasing number of elderly people [52]. Although the

risk to get PD is much higher for older individuals (average age at onset is 68 years),

patients with young onset are also reported [216, 225]. PD is nowadays subdivided

in idiopathic Parkinson’s disease (having unknown cause) and Parkinson plus syn-

dromes [215]. Parkinson plus syndromes counts for 15% of all parkinsonism, al-

though in large autopsy series the percentage was estimated as 20–25% [87], thus

leaving idiopathic Parkinson’s disease as the most frequently occurring form [95].

In this thesis we concentrate on idiopathic PD and PD will refer to this form of the

disease only.
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2 1 Introduction

Although the specific causes of PD remain unknown, it seems that it involves a

combination of genetic and environmental factors. The pathology of the disease is

characterized by progressive loss of neuromelanin-containing cells and by the pres-

ence of intra-cytoplasmic inclusions, called Lewy bodies, in surviving neurons in

the SNc and other areas. For an overview see Usunoff et al. [215]. The Lewy bod-

ies consist primarily of an accumulation of a neuronal protein called α-synuclein.

“Lewy bodies in the substantia nigra (SN) are considered the pathological hallmark

of Parkinson’s disease, which means that if they cannot be found, the diagnosis is

not Parkinson’s disease” [215]. There are no Lewy bodies involved in Parkinson-

plus syndromes. However, within the human SNc not all subareas degenerate. In

particular, most severe neuronal loss is in the ventrolateral SNc [215]. The affected

area of the SNc gives rise to most of the dopaminergic innervation of the sensorimo-

tor region of the putamen, which is part of the striatum. Thus, dopamine loss mainly

affects the nigrostriatal pathway. The conclusion that PD involves degeneration of

pigmented neurons of the brain stem is inevitable [68]. This conclusion is also based

on the distribution of Lewy bodies in other brainstem areas.

As a consequence of dopamine depletion, neurons in the basal ganglia have al-

tered firing rates and have disturbed activity patterns with increased synchroniza-

tion, see reviews by Hammond et al. [80] and Galvan and Wichmann [61]. Such

changes lead to different symptoms whose manifestation and severity are highly

variable from patient to patient. Due to several compensatory mechanisms, such as

super-sensitivity of dopamine receptors and neuronal plasticity of the brain, the first

clinical signs of PD manifest only when approximately 70–80% of striatal dopamine

levels are depleted or 50–60% of the dopaminergic neurons are lost in the SNc

[23, 26]. The four cardinal motor symptoms of PD include muscle rigidity, tremor

of the limbs at rest, slowness and impaired scaling of voluntary movement (bradyki-

nesia)/loss of voluntary movements (akinesia) and postural instability [93]. Other

motor symptoms include gait and posture disturbances as well as speech and swal-

lowing disturbances. In addition to these motor symptoms many patients also suf-

fer from non-motor symptoms, including personal and behavioral, cognitive, sen-

sory, and autonomic disturbances. It should be mentioned that the early symptoms

(tremor, rigidity and bradykinesia) are related to progressive loss of dopamine, while

the later symptoms are not always related to the dopamine depletion.

Currently, there is no treatment available to prevent the onset or to stop/slow

down the progression of PD. However, there exist excellent drugs and surgical treat-

ments to effectively control the symptoms of the disease. When the cardinal symp-

toms start to show up and are severe enough to interfere with daily life, patients

get different types of medication in order to increase their dopamine level in the

basal ganglia, thereby suppressing the motor symptoms. Nowadays, the most com-
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mon and effective therapeutic treatment for PD is a dopamine replacement therapy,

which consists in adminstration of the dopamine precursor levodopa (L-Dopa). In

particular, replacement of dopamine with L-Dopa improves bradykinesia, rigidity

and, to a lesser extent, tremor. However, long-term (5–10 years) L-Dopa usage is

commonly associated with motor fluctuations (‘on–off’ effect) and abnormal invol-

untary movements (dyskinesia) [156, 157]. Dopamine deficiency can also be treated

with medications that prevent the breakdown (Monoamine oxidase (MAO) B in-

hibitors or Catechol-O-methyl transferase (COMT) inhibitors) or mimick the effects

(dopamine agonists) of dopamine. Those therapies are less effective than treatment

with L-Dopa and they are not without their own adverse effects. Moreover, some of

them work only in combination with L-Dopa. As the disease progresses, the efficacy

of all drug therapies decreases, and higher doses have to be administered.

Surgical techniques such as lesioning or deep brain stimulation (DBS) of specific

brain regions are other therapies to reduce PD motor symptoms, when medication

does no longer produces satisfying results or in case side-effects of medication be-

come significant. Due to the operation risks of ablation of functional targets, such

as hemorrhages and loss of brain function, lesioning surgery has gradually been re-

placed by DBS surgery. DBS is able to mimic the effects of ablation in a reversible

manner and is now an established treatment of advanced PD [16, 76]. The procedure

for DBS involves the implantation of an electrode called the lead into a region of the

brain that controls movement. The lead is then connected via an insulated wire (ex-

tension) to a programmable, battery-operated pulse generator (’brain pacemaker’)

that is implanted below the clavicle, see Figure 1.1A. The DBS lead can be implanted

in one of several nuclei including the subthalamic nucleus (STN) [15, 122], globus

pallidus pars interna (GPi) [190] and the ventral intermediate thalamic (VIM) nu-

cleus [12, 13]. Thalamic DBS is mainly effective in reducing tremor. However, when

DBS is predominantly applied within the STN or GPi, it relieves other PD motor

symptoms, including rigidity and bradykinesia [76]. Remarkably, DBS is only ef-

fective for the different target nuclei within very specific parameter ranges, most

notably at high frequencies (>100 Hz) and with lower amplitudes at higher fre-

quencies [146, 177]. These parameter settings for DBS are based on several studies

[14, 122, 219, 220]. Despite the high clinical success rate, the mechanism by which

DBS prevents pathophysiological responses of the motor network remains to a large

extend unknown. It is suggested that high frequency stimulation leads to somatic

inhibition of neurons that are close to the electrical field, while simultaneously affer-

ent and efferent axons may be excited. Both cellular and network effects may con-

tribute to the overall clinical effects of DBS. Moreover, stimulation does not neces-

sarily have to restore the network to a pre-pathological, i.e. normal state, but should

allow improvement in Parkinson’s symptoms. McIntyre and Hahn [136] hypothesize



4 1 Introduction

that high frequency stimulation disrupts or desynchronizes the pathological activity

by changing the underlying dynamics of the stimulated brain networks, which can

be achieved via activation, inhibition, or lesion.

DBS lead

Pulse generator

Extension

Plane of section

Putamen

Substantia nigra

Caudate
nucleus

Ventrolateral
thalamic nucleus

Subthalamic
nucleus

Globus
pallidus

(A) (B)

Figure 1.1 (A) Schematic representation of the implantation of a deep brain stimulation system. (B)

The basal ganglia area. The four principal nuclei are the striatum (putamen and caudate nucleus),

the substantia nigra, the subthalamic nucleus and the globus pallidus. Reproduced with permission

from Okun [159], Copyright Massachusetts Medical Society.

1.2 Basal ganglia

One of the main brain regions that is involved and affected in PD is the basal gan-

glia. It is the collective name given to a group of interconnected forebrain nuclei

located at the base of both cerebral hemispheres, lateral to and surrounding the tha-

lamus. It includes the neostriatum, the globus pallidus pars externa (GPe) and pars

interna, the substantia nigra pars compacta and pars reticulata (SNr), and the sub-

thalamic nucleus. The neostriatum is further subdivided in the caudate nucleus and

the putamen. Except for their most anterior part, the caudate nucleus and putamen
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are completely separated by the internal capsula, a large collection of fibers run be-

tween the neocortex and the thalamus in both direction [103]. Figure 1.1B shows the

relative locations of these nuclei.

Although the basal ganglia nuclei do not have a direct input or output to the

spinal cord, they play a major role in normal voluntary movement. It is now widely

acknowledged that the basal ganglia are not only involved in motor function but also

in cognition and emotion. This is reflected in the fact that the basal ganglia receive

input from almost the whole cortex. Moreover, dysfunctioning of the basal ganglia

is not only associated with movement disorder, but also with psychiatric disorders

such as obsessive-compulsive disorder [9].

The striatum acts as the major receiver of inputs to the basal ganglia mainly from

the cortex as well as from the thalamus and to a lesser extent from the brainstem.

The corticostriatal connections have an excitatory effect on the GABAergic striatal

neurons and come almost from all parts of the cerebral cortex. The GABAergic stri-

atal neurons project directly or indirectly, via the GPe and the STN, to the output

nuclei, which in turn project to the thalamus and the brain stem. Thus, basal ganglia

nuclei process the cortical information and send their output to the brainstem, and

via the thalamus, back to the cortex. These information processing occur in anatom-

ically and functionally segregated parallel circuits. Depending on the cortical region

involved, these circuits are divided in motor, oculo-motor, associative (dorsolateral

prefrontal and orbitofrontal) and limbic loops [3, 4, 139, 194]. Each circuit uses dif-

ferent parts of the basal ganglia and the thalamus. As PD is mainly a movement

disorder, we will focuss on the motor circuit. The major pathways within the basal

ganglia-thalamocortical loop, which are known to be involved in the execution of

voluntary movement, are illustrated in Figure 1.2 [61, 64, 103].

Much of the insights into the motor function of the basal ganglia have been

obtained by studying the deficits that occur following disorders of the basal gan-

glia, such as Parkinson’s disease and Huntington’s disease. This research was facili-

tated by the discovery that neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

(MPTP) can selectively destroy nerve cells in the substantia nigra of primates after

systemic administration, thereby inducing parkinsonian symptoms.

1.2.1 The classical model of the basal ganglia

In the late 1980’s, a model for basal ganglia motor circuit functioning was proposed

by Albin et al. [2] and DeLong [47]. Derived from studying human movement dis-

orders, the model consists of two major connections, the so called direct and indi-

rect pathways, linking the basal ganglia input nucleus (striatum) to the output nu-
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clei (GPi/SNr). The critical balance between these two pathways determines normal

motor behavior. The basal ganglia output nuclei have a high rate of spontaneous

discharge, and thus exert a tonic, GABA-mediated, inhibitory effect on their target

nuclei in the thalamus. The inhibitory outflow is differentially modulated by the di-

rect and indirect pathways, which have opposing effects on the basal ganglia output

nuclei, and thus on the thalamic targets of these nuclei.

The direct pathway arises from inhibitory striatal efferents that contain both

GABA and substance P and it projects directly to the output nuclei. It is transiently

activated by increased phasic excitatory input from the SNc to the striatum. Activa-

tion of the direct pathway briefly suppresses the tonically active inhibitory neurons

of the output nuclei, disinhibiting the thalamus, and thus increasing thalamocorti-

cal activity. The indirect pathway starts with inhibitory striatal efferents that contain

both GABA and enkephalin. These striatal neurons project to the GPe, which in turn,

projects to the STN, via a purely GABAergic pathway, which finally projects to the

output nuclei via an excitatory, glutamatergic projection. There is also a direct projec-

tion from the GPe to the output nuclei. The indirect pathway is phasically activated

by decreased inhibitory input from the SNc to the striatum, causing an increase in

striatal output along its pathway. Normally the high spontaneous discharge rate of

GPe neurons exerts a tonic inhibitory influence on the STN. Activation of the indi-

rect pathway tends to suppress the activity of GPe neurons, disinhibiting the STN,

and increasing the excitatory drive on the output nuclei. The decreased GPe activity

also directly disinhibits the output nuclei. The resulting increase in activity of the

output nuclei inhibits the thalamus further, decreasing thalamocortical activity. Ac-

tivation of the direct pathway thus facilitates movement, whereas activation of the

indirect pathway inhibits movement. See McIntyre and Hahn [136], for an extended

overview.

Nigrostriatal dopamine projections exert contrasting effects on the direct and indi-

rect pathways (Figure 1.2). Dopamine is released from the SNc into the synaptic cleft,

where it binds to the receptors of the striatum. The effect of dopamine is determined

by the type of receptor to which it binds. Striatal neurons projecting in the direct

pathway have D1 dopamine type receptors, which cause excitatory post synaptic

potentials, thereby producing a net excitatory effect on striatal neurons of the direct

pathway. Those projecting in the indirect pathway have D2 type receptors, which

cause inhibitory post synaptic potentials, thereby producing a net inhibitory effect on

striatal neurons of the indirect pathway. The facilitation of transmission along the di-

rect pathway and suppression of transmission along the indirect pathway, both have

the same effect of reducing inhibition of the thalamocortical neurons and thus facil-

itating movements initiated in the cortex. Thus, the overall influence of dopamine
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within the striatum may be to reinforce the activation of the particular basal ganglia-

thalamocortical circuit which has been initiated by the cortex [63, 64, 90].
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Figure 1.2 Connection diagram of the basal ganglia-thalamocortical motor circuit. Black lines in-

dicate inhibitory pathways; grey lines indicate excitatory pathways. Thickness of the lines cor-

responds to the presumed connection strength between different regions during healthy (A) and

parkinsonian (B) brain states. Abbreviations: Dir., direct pathway; GPe, globus pallidus pars externa;

GPi, globus pallidus pars interna; Indir., indirect pathway; PPN, pedunculopontine nucleus; SNc,

substantia nigra pars compacta; SNr, substantia nigra pars reticulata; STN, subthalamic nucleus;

VA, ventroanterior thalamic nucleus ; VL, ventrolateral thalamic nucleus.

1.2.2 The classical model in PD

Using the above model of basal ganglia function with its direct and indirect pathway,

PD is explained as an imbalance between the two pathways. Due to the differential

effects of dopamine on the D1 and D2 dopamine receptors of the striatum, a loss of

striatal dopamine results in a reduction in transmission through the direct pathway

and an increase in transmission through the indirect pathway. In the direct pathway,

a reduction in inhibitory influence on the output nuclei occurs. Within the indirect
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pathway, an excessive inhibition of the GPe leads to disinhibition of the STN, which

in turn provides excessive excitatory drive to the output nuclei. The resulting in-

crease in activity of GPi and SNr neurons leads to excessive inhibition of thalamo-

cortical and brain stem neurons, which in turn supports the hypokinetic symptoms

of bradykinesia and akinesia as seen in PD. Increased firing rates are found in the

striatum, GPi and STN and a minimally decreased discharge in the GPe. A summary

of tonic firing rates of basal ganglia nuclei in the normal and parkinsonian situation

can be found in Heida et al. [83].

1.2.3 Limitations of the classical model

There are several clinical and experimental findings that cannot be explained by the

classical model of the basal ganglia, see Obeso et al. [157]. The assumption of the

classical model is the existence of two parallel cortico-basal ganglia-thalamocortical

loops that diverge within the striatum and are differentially modulated by dopamine.

However, anatomical and chemical separation of striatal neurons giving rise to the

two pathways is unlikely to be absolute, considering the fact that striatal neurons

can co-express D1 and D2 receptors [1, 201] and striatal neurons have been found

projecting to GPe, GPi and SNr [119]. In the classical model, the effect of dopamine

is restricted to the striatum while there is evidence that dopamine can have effect in

other regions of the basal ganglia-thalamocortical loop [99, 193].

The classical model leaves out a number of connections that maybe important

for motor function. For example, the cortico-STN hyperdirect pathway [11, 32, 149,

151, 152] conveys powerful excitatory effects from the motor-related cortical areas

to the globus pallidus, bypassing the striatum. The hyperdirect pathway is there-

fore an alternative direct cortical link to the basal ganglia, possibly as important to

motor control as the direct pathway, which is typically considered to be the main cor-

tical relay in the basal ganglia. But also connections from the basal ganglia to brain

stem structures, such as the pedunculopontine nucleus (PPN), are not involved. PPN

plays a role in the control of muscle tone by means of its excitatory projections to the

muscle tone inhibitory system in the brainstem and to inhibitory interneurons in the

spinal cord. The PPN is also thought to produce the main influence on the parafasci-

cular thalamic nucleus in case of SN degeneration [229]. The parafascicular nucleus

is involved in motor control. In PD the increased inhibitory basal ganglia output,

together with a decrease in cortical excitation of the PPN, may increase the level of

muscle tone causing rigidity [205].

The classical model is based on the idea that the average firing rate in the out-

put of the basal ganglia controls and predicts motor behavior. However, the pattern
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of discharge of basal ganglia neurons is thought to be equally as important as the

rate of discharge in the execution of smooth movements [19, 21, 28, 80]. Several al-

terations in the discharge pattern have been observed in neurons of the basal gan-

glia in PD subjects. These alterations include a tendency of neurons to discharge in

bursts, increased correlation and synchronization of discharge between neighboring

neurons, rhythmic and oscillatory behavior, see reviews by Hammond et al. [80],

and Galvan and Wichmann [61]. Coherence between STN and GPi activity has been

confirmed at tremor frequencies (3–10 Hz) [34]. These oscillatory patterns are pro-

jected to GPi’s thalamic projection site, the ventroanterior thalamic nucleus, and

the cortex. In addition, STN and GPi demonstrate a tendency to synchronization

at beta-frequencies (11–30 Hz), which is likely to be driven from the motor areas

of the cortex [32]. Several studies have demonstrated both in local field potentials

and neuronal spike activity, that beta-frequency oscillations and synchronization are

prominent features of the STN activity in PD patients and inversely correlate with

the motor improvement produced by either dopaminergic treatment or DBS of the

STN [32, 111, 113, 121, 173, 175]. In this circuit, the thalamus is in a key position as

it receives the convergent afferent input from the GPi, the cortex, and the peripheral

system, which it then projects back to the cortex, including motor areas [194].

1.3 Computational models of the basal ganglia

Computational studies are useful in investigating how pathological conditions and

DBS induced activity may find their way through the basal ganglia-thalamocortical

circuit and the basal ganglia-brain stem circuit. In addition, computational models

can be used in order to test new DBS targets and DBS protocols and to confirm or

reject hypotheses concerning the mechanisms underlying the pathological activity

in the basal ganglia.

In 1952, Alan Lloyd Hodgkin en Andrew Huxley wrote a series of papers, de-

scribing the electrophysiological experiments they conducted on a giant squid axon

to reveal the mechanisms which govern the generation of action potential in neurons.

They discovered that the changes in membrane potential during an action potential

result from the regulated opening and closing of sodium and potassium channels

in the cell membrane. From their experiments they derived a mathematical model

consisting of a set of nonlinear partial differential equations to describe the genesis

of the action potential [85]. One can say that the field of computational neuroscience

started with Hodgkin’s and Huxley’s mathematical description of their experimental

results. Their equations describing the flow of ions across the cell membrane based
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on voltage and on concentration are still used in computational models of neurons

today.

Thus, neurons can be modeled using the properties of ion channels in the cell

membrane. To build a good biophysical model of a certain neuron involves at least

the following steps. Firstly, the ionic currents, which are responsible for the charac-

teristic spiking behavior of that neuron type, have to be identified. For this purpose,

pharmacological channel blockers can be used. Secondly, to measure the kinetic pa-

rameters of the currents, various stimulation protocols need to be performed, such

as voltage-, space- and patch-clamp. Finally, a mathematical model of the Hodgkin–

Huxley type equations is used to describe the dynamics of the membrane potential

and the ion channels.

The majority of realistic single cell models used today are based on the Hodgkin–

Huxley formalism and they are referred to as conductance-based models. A neuron

can be represented as a point, meaning that there is no cellular morphology depen-

dency. Cellular morphology can be incorporated by dividing the neuron into com-

partments where each compartment is simulated by a conductance-based model,

and the compartments are coupled via conductances. Having now a mathematical

description of a single neuron at our disposal, we can connect the individual neuron

models together via synapses or gap-junctions to form neuronal circuits.

Terman et al. [211] were one of the first to develop a biophysically plausible model

of a subset of the basal ganglia. In particular, their model includes a population

STN cells and GPe cells, in which each STN and GPe cell is represented as a single

compartment conductance-based model. They use voltage-clamp and current-clamp

data from rat neurons to estimate the kinetic parameters of both cell models. Their

subthalamopallidal network model has well defined physiological and pathological

states, that rely on the strength of the synaptic connections between the cells and the

inputs to them. They demonstrate that under parkinsonian condition, i.e. increased

inhibitory input to the GPe, the STN–GPe network can show a pacemaker rhythm at

tremor frequency. Their results support the hypothesis that the pathological activity

in the basal ganglia as seen in PD is caused by the interaction between the STN and

GPe rather than being driven by an external source [170].

The output of the basal ganglia network is directed towards the thalamic nuclei

(Figure 1.2), which influences the motor cortex. Rubin and Terman [181] extend their

STN–GPe network model with a population of GPi and thalamic relay cells to inves-

tigate how DBS can affect the functioning of the thalamus as a relay station. Although

this is a simplification, it is presumed that this relay should retransmit incoming in-

formation from cortex and sensory systems back to cortex. They show how DBS may

be regularizing the output of thalamus. The pathological oscillations from the basal

ganglia may impair the transmission of thalamocortical information. When replac-
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ing these basal ganglia oscillations by regular DBS input, thalamocortical relay may

be restored [70, 181]. A lot of computational studies of the basal ganglia in relation to

PD and DBS are based on these two network models, including the studies described

in Chapters 2 and 3.

1.3.1 Tuning and fitting of the parameters

We started the Introduction with the quote “Build it, and you understand it”. Thanks

to, among other things, the work of Hodgkin and Huxley we are able to model a neu-

ron from which we can go to neuronal circuits, brain structures and even the whole

brain. But what do we learn from it? Conclusions drawn from models are only valu-

able when the network model is able to describe and to predict experimental stud-

ies correctly. A crucial step in constructing a realistic neuron model is the tuning

of model parameters to replicate well described properties of the neuron in ques-

tion. Experimental studies on the properties and localization of current channels are

therefore a prerequisite for adequate modeling of a neuron. However, information

regarding the presence, types and properties of ion channels in human neurons is

scarce. Although these gaps in knowledge can be filled in by using the parameters

obtained from experimental animal studies, difficulties in fitting and tuning remain

because of different experimental conditions, which makes it difficult to compare

results. Moreover, different parameters and different current can lead to the same

firing behavior. As put forward by Izhikevich [91], the behavior of a neuron model

should be equivalent to the neuron under consideration. He proposes that the be-

havior of the model is equivalent to the neuron if it undergoes the same dynamical

bifurcation as the neuron, even if some of the currents are omitted or some of the

kinetic parameters are guessed incorrectly [91]. For single neuron model bifurcation

analysis is possible, but for large network models it is almost, if not, impossible.

In the network model of Terman et al. [211] the architecture and the coupling

strength between STN and GPe cells as well as the applied current to them are essen-

tial for the obtained physiological and pathological states. In contrast, the network

model of Hahn and McIntyre [72] is able to switch from parkinsonian to healthy

activity by reducing the influence of the cortical beta input, thereby supporting the

hypothesis that parkinsonian activity within the STN–GPe network has a cortical

origin. Interesting in the work of Hahn and McIntyre [72] is the way they deal with

the gaps in knowledge of the topography and the strength of the synaptic connec-

tions within and between the cellular populations (STN, GPe and GPi), and the in-

put to these populations. They use a relatively simplistic and stereotyped functional

channel architecture, in which the action-selection function of the basal ganglia is
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preserved. To define the coupling and input parameters such that the model activity

resembles experimental observed activity, they develop an optimization algorithm,

whereas Terman et al. [211] use a parameter sensitivity analysis to identify unique

parameter sets. The algorithm tries to match the firing and burst rate characteristics

of the STN, GPe, and GPi obtained from micro-electrode recordings of MPTP treated

monkeys by adjusting a set of coupling and input parameters.

In general there is a wide gap between experimental animal results, especially

with respect to neuroanatomical data, and computational modeling. In order to be

able to investigate the anatomical and functional properties of afferent and effer-

ent connections between the different nuclei of the basal ganglia, neuroanatomical

tracing and degeneration studies need to be performed. These studies, though very

time-consuming, are essential to decide which pathways play important roles in nor-

mal functioning and therefore need to be included in modeling studies. In addition,

it should be known what neuroanatomical changes take place resulting from the

neurodegeneration associated with Parkinson’s disease and how they affect network

behavior. For instance, the direct effects of DBS on motor control are of interest, but

since DBS has a low threshold to side effects, additional non-motor pathways are ex-

pected to be involved. Including these pathways in network models may shed light

on the extent and effect of stimulation. Similarly, as PPN stimulation may have a

beneficial influence on gait and balance, different pathways are important regarding

the different motor symptoms of PD.

Population level recordings such as local field potential (LFP) are commonly used

in animal research in Parkinson’s disease, see Chapter 5. It is not trivial how such

recordings can be used in network models of spiking neurons. Generally speaking, it

is assumed that LFP reflects the incoming synaptic activity (excitatory and inhibitory

postsynaptic potentials) [102, 141], while spikes reflect the output of the local net-

work [59, 117]. However, other slow processes may contribute to the generation of

LFPs, see Moran and Bar-Gad [143] and references therein. To use the observations

of population level recordings to tune the spiking models, for example in the fitting

algorithm of Hahn and McIntyre [72], the spiking activity has to be averaged in one

way or another.

It is also possible to represent the neural populations within the basal ganglia-

thalamocortical loop with neural mass models, which describe the collective dynam-

ics of an ensemble of neurons and the interaction with other ensembles. Dynamic

Causal Modeling is a theoretical framework which can be used to reveal the synap-

tic strength within the basal ganglia-thalamocortical loop from the population level

recordings through optimization of neural mass model parameters given a set of

recordings and a network topology [108, 145, 198, 199]. However, the results are not

straightforward to relate to spiking models.
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Dissociated neural cultures as well as brain slices positioned on multi electrode

arrays open the possibility to study basal ganglia nuclear functional action and in-

teraction, i.e. the overall result of all cell membrane activities of a neuron or group of

neurons. By the addition of neurotransmitters, their agonists or antagonists, PD basal

ganglia activity can be mimicked in vitro. It is expected that this alternative route of

studying PD will bring up the badly needed extra information to support fine-tuning

of neuron and neuronal network models and will as a consequence incorporate the

more subtle connections nowadays described in neuroanatomical studies.

Essential in modeling is to formulate reduced models that still capture essential

properties of the dynamics but are able to include even these subtle connections.

Models need verification by experiments to demonstrate that the model has reality

value. With the increasing amount of in vitro and in vivo experimental data computa-

tional models may become applicable in human research and health care problems.

The therapeutic stimulation parameters for DBS (polarity, pulse amplitude, pulse

width, frequency) will in the near future rely more on the predictions made by model

simulations [46]. Below we give an example how micro-electrode recordings can be

used as input for a thalamic relay cell model to validate the existence of a clinically

effective stimulation window that combines low stimulation amplitudes and high

frequencies [137].

1.3.2 Example of using micro-electrode recordings within

computational models

We used a thalamic relay cell model to investigate the effect of DBS parameters on

thalamocortical relay of excitatory cortical inputs and pathological basal ganglia os-

cillations. In particular, we focused on the effectiveness of the stimulation with re-

spect to PD tremor reduction. A GPi spike train obtained from a human PD patient

during DBS surgery with characteristic patterns of rest tremor was used to generate

GPi input to the thalamus. See Chapter 4 for the details how such a spike train can

be extracted from micro-electrode recordings. Without relay of cortical input (rest

situation), the thalamic model response consisted of rebounds at the same tremor

frequency (Figure 1.3).

By including excitatory input the combined effects of relay, PD and DBS could be

examined (Figure 1.4). The pathological input was partially replaced by DBS pulses

reflecting a limited volume of tissue being activated by the stimulation. For DBS

there are two common targets: STN and GPi. Stimulation of the STN may recruit

efferent fibers that excite GPi. In both cases it is therefore plausible that DBS leads

to additional downstream GPi output. At the thalamus, the input from the basal
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Figure 1.3 (A) The model synaptic input (sPD) reflects the burstiness of the activity of the measured

GPi neuron. The presynaptic GPi spike times are indicated by the dots. (B) The thalamic relay cell

exhibits post-inhibitory rebound action potentials, i.e. during the pause after the GPi burst an action

potential is generated.

ganglia comes from the GPi and is therefore inhibitory. A key property of thalamic

relay cells is their low-threshold T-type calcium current. When the thalamic relay cell

is inhibited long enough, it fires rebound action potentials when it is relieved from

inhibition [92] (Figure 1.3B). The effect of such phasic pathological inhibition is that

the thalamic output activity does not reflect the original excitatory input. This stems

from two sources of errors. Long periods of inhibition diminish the responsiveness

of the thalamic relay cell and rebound spikes are mixed with successful relays.

In the model we found that additional high frequency stimulation induced inhibi-

tion can stop the transmission of pathological oscillations around the loop. The relay

of excitatory cortical input is, however, not affected for mid-range to moderately

high DBS amplitudes (Figure 1.4B). Failure of the relay function is only observed

at very high DBS amplitudes (Figure 1.4C). Taken together, this approach yields a

parameter window that corresponds to therapeutic stimulation, i.e where relay of

sensorimotor information is maintained and pathological input is suppressed.

1.4 Outline of the thesis

In the following two chapters, we employ computational models in order to get in-

sight in a new proposed stimulation protocol as well as a new proposed target for

deep brain stimulation. It has been suggested that short-duration stimulation proto-

cols instead of the standard continuous high frequency stimulation may also disrupt
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Figure 1.4 The effect of overwriting the pathological GPi input by increasing DBS amplitude. The

upper traces represent the membrane voltage (V) of the thalamic relay cell. The precise timing of the

excitatory input (mean rate 16.5 Hz) is displayed beneath each voltage trace. (A) If the stimulation

amplitude is too weak, rebounds and an incorrect signal relay occur. (B) With moderate DBS am-

plitude, rebounds are quenched and relay is correct. (C) With high DBS amplitude, relay of sensory

information is impaired.

the pathological activity [208]. The mechanism underlying these protocols is sup-

posedly synaptic plasticity. We extend the STN–GPe network model of Rubin and

Terman [181] with spike-timing-dependent plasticity (STDP) to explore its role in

stabilizing firing patterns in the basal ganglia. Moreover, we investigate how stim-

ulation should be applied, such that it exploits STDP most effectively to teach the

network to fire in a less pathological manner.

Due to its location in the brainstem and its function in locomotion and postural

control, the pedunculopontine nucleus (PPN) has been suggested as a target for DBS

to improve gait and postural instability. It is remarkable that DBS in PPN should

be applied with low frequency (20–25 Hz) to improve gait disturbances and pos-

tural instability. Based on experimental data, we have developed a computational

conductance-based model for the glutamatergic PPN type I cell. The network model

of Rubin and Terman [181] produces basal ganglia output that is used as input for

the PPN cell. The conductances for projections from the STN and the GPi to the PPN
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are determined from experimental data. The resulting behavior of the PPN cell is

studied under normal and parkinsonian conditions of the basal ganglia network.

The effect of high frequency stimulation of the STN is considered as well as the ef-

fect of combined high frequency stimulation of the STN and stimulation of the PPN

at various frequencies.

In Chapter 4 we optimize spike-sorting algorithms which are able to automatically

extract individual unit-activity from multi-unit micro-electrode recordings obtained

during deep brain stimulation surgery. We use the spike-sorting algorithms to inves-

tigate the functional connectivity between STN neurons in PD patients. Furthermore,

we investigate the spatial distribution of the functional connectivity within the STN.

To do so, we map the multichannel STN micro-electrode recordings, that are classi-

fied in the STN, to a generic atlas representation of the STN with a sensorimotor part

and a remaining part.

Finally, in Chapter 5, we develop a measurement set-up to record local field po-

tentials in different brain structures relevant for Parkinson’s disease in freely moving

rats. We were able to record in the same animal, under healthy and parkinsonian con-

ditions, at rest or during forced exercise. The obtained data may be used to tune the

computational models in the first two chapters or other computational models of the

basal ganglia, see Section 1.3.1.



CHAPTER 2

The effect of spike-timing-dependent plasticity on

activity patterns in the basal ganglia

Abstract In advanced Parkinson’s disease (PD), deep brain stimulation (DBS) can

be used to disrupt the pathological activity in the basal ganglia, thereby reducing

the PD motor symptoms. The standard protocol for DBS, continuous high frequency

stimulation of target cells, is applied notably in subthalamic nucleus (STN) or globus

pallidus pars interna. It is proposed that short-duration desynchronizing stimula-

tion protocols may also disrupt pathological activity: synaptic plasticity is supposed

to be the underlying mechanism. Here, we use an existing biophysically plausible

STN–GPe network model which we have augmented with a rule for spike-timing-

dependent plasticity (STDP) for the inhibitory connections within globus pallidus

pars externa (GPe). We explore the role of plasticity in stabilizing firing patterns.

Moreover, we investigate how STN stimulation should be applied, such that it ex-

ploits STDP most effectively to bring the network in a less synchronous state. An

STDP rule that down-/up-regulates the synaptic weights between GPe cells when

they fire in synchronized/uncorrelated manner, stabilizes network states. Both a

healthy state with desynchronized dynamics and a PD state with synchronized dy-

namics stably coexist. Our results suggest that when a traveling wave short-duration

desynchronizing stimulation is applied sufficiently long and with sufficiently high

amplitude, it may profit from STDP to train the network to fire in a less pathologi-

cal manner. In contrast, STDP has a negative effect when continuous stimulation is

employed, in the sense that the network becomes more synchronized when stimu-

lation is switched off. Since with this kind of stimulation most of the time DBS is

turned off, it saves battery power and it leads to fewer negative side effects of DBS

in comparison to the traditional continuous high frequency stimulation1.

1 The material presented in this Chapter is in preparation for submission to Journal of Computational

Neuroscience.
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18 2 The effect of STDP in the basal ganglia

2.1 Introduction

As a consequence of the dopamine depletion in Parkinson’s disease (PD), neurons

in the basal ganglia (BG) tend to discharge in bursts, have altered firing rates and

exhibit abnormally synchronized oscillatory activity at multiple levels of the BG-

cortical loop, see reviews by Hammond et al. [80], and Galvan and Wichmann [61].

In particular, single-unit and/or local field potential (LFP) recordings have demon-

strated that the external part of the globus pallidus (GPe) and the subthalamic nu-

cleus (STN) exhibit a tendency to oscillate and synchronize at low frequencies (3–

30 Hz) in the parkinsonian state [20, 34, 130, 155, 176]. The pathophysiological beta-

frequency oscillations (13–30 Hz) are thought to be responsible for bradykinesia and

rigidity in PD patients [111, 113, 175, 223], whereas the 3–10 Hz oscillations have

been associated with tremor [44, 120, 197, 207].

High frequency (> 100 Hz) deep brain stimulation (DBS), especially of the STN,

is an established therapy to reduce PD motor symptoms, when medication does

no longer produce satisfying results or induces dyskinesia [16, 76]. With optimized

stimulation parameters, established empirically [146, 177, 219, 220] and confirmed

theoretically [38, 53, 137], STN–DBS is able to reduce dyskinesia and to improve

motor symptoms including tremor, bradykinesia and rigidity [109, 179]. However,

STN–DBS is less effective for gait disturbance and postural instability, and its thera-

peutic benefit may decline over time [109, 179]. Furthermore, STN–DBS may cause

adverse effects including cognitive decline, speech difficulty, instability, gait disor-

ders and depression [179]. To overcome these limitations of high frequency DBS and

to design improved stimulation protocols, it is important to understand how high

frequency DBS works. Unfortunately, the fundamental physiological mechanism by

which DBS prevents pathophysiological responses of the motor network are still not

understood. It is suggested that high frequency stimulation leads to somatic inhibi-

tion of neurons that are close to the electrical field, while simultaneously afferent and

efferent axons may be excited. Both cellular and network effects may contribute to

the overall clinical effect of DBS. Moreover, stimulation does not necessarily have to

restore the network to a pre-pathological/healthy state, but should allow improve-

ment in Parkinson’s symptoms. McIntyre and Hahn [136] hypothesize that high fre-

quency stimulation disrupts or desynchronizes the pathological activity by changing

the underlying dynamics of the stimulated brain networks, which can be achieved

via activation, inhibition, or lesion.

A clinical observation is that when stimulation is turned off the symptoms do not

return instantaneously, but revert back gradually: tremor within minutes, bradyki-

nesia and rigidity within half an hour to an hour, and axial signs within 3 to 4 hours

[210]. When the stimulator is turned on again, the symptoms improve in the same
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order, but faster than their rate of deterioration. This observation implies that the

DBS-induced dynamical changes have a long-lasting effect, and it suggests that dif-

ferent pathophysiological mechanisms underlie the major PD-symptoms. A neural

mechanism that can achieve such long-lasting effects is synaptic plasticity. Thus, DBS

may start a cascade of long term changes, up-regulating some synapses and down-

regulating others, that eventually disrupt the pathophysiological mechanism and

slowly reverse when the stimulator is switched off. To exploit this synaptic plasticity

effect of DBS, Tass and colleagues have proposed a coordinated reset (CR) stimula-

tion, which is a short-duration desynchronizing stimulation protocol that leads to a

therapeutic synaptic reshaping of neuronal networks [208]. In epileptic hippocampal

slices of a rat it was shown that the CR-stimulation has long-lasting desynchronizing

effects [209].

To steer novel stimulation protocols that are based on reshaping synaptic connec-

tions, it is important to know in which circuitry and how the pathological activity is

generated. However, the mechanisms underlying the pathological activity in PD are

still debated. Using organotypic culture preparation with GPe and STN with fron-

tomedial cortex and dorsolateral striatum, Plenz and Kital [170] conclude that the

observed correlated activity in STN and GPe is caused by their interaction between,

rather than being driven by an external source. It is hypothesized that autonomous

pacemaking in GPe neurons counterbalances the natural tendency of the reciprocally

connected STN–GPe network to switch into a pathological synchronous, rhythmic

bursting as seen in PD. Computational models show that increasing the inhibitory

input to the GPe, due to dopamine depletion in the striatum, leads to a suppression

of the autonomous GPe activity, thereby creating PD activity [114, 211]. In contrast,

in vivo experiments give evidence that synchronized beta oscillations associated with

the parkinsonian state are driven from motor areas of the cortex via the hyperdirect

cortico-subthalamic pathway [128, 131, 189]. Recently, Ammari et al. [5] have shown

in dopamine-depleted BG slices of mice that STN neurons, without synaptic inhi-

bition from GPe, generate bursts of excitatory postsynaptic currents (EPSCs) in re-

sponse to a single electrical stimulus. Such a burst of EPSCs leads to bursts of spikes

in the STN. They hypothesize that the glutamatergic network within the STN, that is

under negative control of dopamine, amplifies the STN responses to incoming exci-

tation in the dopamine-depleted BG by generating bursts of spikes that will in turn

generate bursts of spikes in GPe neurons. However, such a glutamatergic network

within STN has not been shown to exist in humans.

There exist many different computational BG-models in the literature, each with

one of the above mechanisms to regulate its state. Rubin and Terman [181] have been

the first to analyze the DBS induced network effects with a biophysically plausible

BG-model. Their model has well defined physiological and pathological states, that
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rely on the strength of synaptic connections within the GPe and the striatal input to

the STN–GPe network, supporting the STN–GPe pacemaker hypothesis. They pre-

dicted that STN–DBS induced high frequency tonic firing of STN would regularize

BG input to thalamus, thereby restoring the thalamic relay function. A recent com-

putational study by Hahn and McIntyre [72] hypothesizes that parkinsonian beta

activity within the STN–GPe network has a cortical origin. Their network model

was able to switch from parkinsonian to healthy activity by reducing the influence

of the cortical beta input. They hypothesize that STN–DBS should reduce the GPi

bursting to a certain level in order to be therapeutic and that the reduction is depen-

dent upon both stimulation frequency and the volume of STN activation. Since the

models do not contain an appropriate slow timescale, these computational studies

cannot explain the long-lasting effects of DBS. When the stimulation was turned off,

their models return immediately back to the parkinsonian state.

The goal of this study is to investigate, with a biophysically plausible model

that can display both healthy and parkinsonian activity, the role of synaptic plas-

ticity in stabilizing firing patterns in the BG. In particular, we will show how DBS

can be used to steer the network through a landscape of plasticity-induced multi-

stability, i.e. healthy and parkinsonian states. To our best knowledge, the only avail-

able spike generated BG-model with synaptic plasticity is the model of Hauptmann

and Tass [82]. The authors model a population of bursting STN neurons interacting

with a population of GPe neurons. Specifically, the dynamics of each STN neuron

are described by a Morris–Lecar model, while the GPe population is modeled as a

slow feedback current to the STN. In this setup, the STN cells fire bursts regulated

by the GPe current. Furthermore, each STN neuron projects to all other STN cells.

These are excitatory connections subject to synaptic plasticity, which is controlled

by the timing of the bursts. The model exhibits a stable healthy state characterized

by desynchronized STN bursts and weak connectivity within the STN, and a sta-

ble pathological state characterized by synchronized STN bursts and strong connec-

tivity within the STN. They show that stimulation of the STN neurons according

to their proposed short-duration desynchronizing stimulation protocol reduces the

mean synaptic weight and shifts the network to a healthy state. Their model relies

crucially on the presence of all-to-all connections within the STN that become weak-

ened by desynchronizing stimuli. However, there is hardly evidence for the existence

of such connections within the STN [226], but see Hammond and Yelnik [79], who

observed an intranuclear axonal collateral in only one out of a total of ten STN neu-

rons.

In this Chapter, we extend this approach by explicitly modeling the GPe neu-

rons, introducing spike-timing-dependent plasticity (STDP) for the experimentally

established inhibitory connections between GPe cells and leaving out the intra-STN
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connections. The dynamics of STN and GPe is governed by the biophysically plausi-

ble single compartment models as proposed by Rubin and Terman [181]. Finally, we

connect these cell models together via a sparse structured architecture as proposed

by Rubin and Terman [181]. In this study, we investigate whether and how STN

stimulation can control the synaptic plasticity such that either a stable healthy state

is reached or a metastable state with irregular dynamics that slowly returns to the

parkinsonian state when stimulation is turned off. We hypothesize that STN stimu-

lation can disrupt the pathological activity if it decreases the rate of coincidence of

GPe spikes, thereby up-regulating the synaptic coupling between the GPe cells.

2.2 Methods

2.2.1 Neuron models for STN and GPe

The dynamics of each STN cell and each GPe cell are represented by a single com-

partment conductance-based model as proposed by Rubin and Terman [181, 211]. To

produce an action potential each cell model includes a sodium current (INa), a potas-

sium current (IK) and a leak current (IL). Each cell model contains also the following

types of ionic currents (Iion): a calcium activated, voltage independent afterhyperpo-

larization potassium current (IAHP), a high threshold calcium current (ICa) and a low

threshold T-type calcium current (IT). In addition to these ionic currents and leak

current each STN and GPe cell receives synaptic current (Isyn) and applied current

(Iapp). The rate of change of the membrane potential (Vm) for each cell is given by:

Cm
dVm

dt
=−IL − Iion − Isyn + Iapp, (2.1)

where Cm is the membrane capacitance. We use the equations and parameter values

for the leak current and ionic currents as described in Terman et al. [211], adopting

the modifications of Rubin and Terman [181] and those in Guo and Rubin [69] to

match more closely in vivo firing patterns (Appendix A).

2.2.2 Network architecture

For the synaptic connections between the STN and GPe cells we use the structured,

sparsely connected architecture given in Rubin and Terman [181] (Figure 2.1). The

network consists of 2 subpopulations, each including 8 STN neurons and 8 GPe neu-
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rons that are connected to each other via weak synaptic connections. Each subpop-

ulation can be further divided into four groups of four neurons (Figure 2.1, STN 1,

STN 2, GPe 1 and GPe 2), such that neurons within the same group provide synaptic

inputs to the same target groups. Each STN group sends excitatory input to one GPe

group of its owns subpopulation and also provides weak excitatory input to the cor-

responding group in the other subpopulation. Each GPe group inhibits one group

of STN neurons of its own subpopulation. Within each subpopulation, there are also

local inhibitory connections between GPe neurons. Finally, each cell (GPe and STN)

receives a constant applied current input (Iapp in equation (2.1)) representing net in-

put from other brain structures. These currents are used to tune the firing rates and

the network state, see Section 2.2.3.
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Input to all STN and GPe cells
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GPe 2
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Figure 2.1 The structured, sparsely connected network architecture adopted from Rubin and

Terman [181]. Based on the connectivity, the network is divided in to two subpopulations, each

consisting of two STN groups and two GPe groups. Each group contains four cells, represented

by solid circles and numbered separately for each cell type, projecting to and receiving input from

the other groups as illustrated by the lines. A solid line denotes a strong connection, whereas a

dashed line denotes a weak connection. Lines ending with arrows and open circles indicate exci-

tatory glutamatergic and inhibitory GABAergic synaptic connections, respectively. Each GPe cell

receives inhibitory input from two other GPe cells of its own subpopulation, and receives excita-

tory input from three STN cells, two of which from its own subpopulation. Each STN cell receives

inhibitory input from two GPe cells of its own subpopulation. In addition to the synaptic inputs, all

cells receive direct current injection as indicated with the two double arrowed lines. Note that the

connections of individual cells are not shown.
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As in Rubin and Terman [181] the synaptic current from j ∈ J presynaptic cells of

nucleus α to a postsynaptic cell i of nucleus β is modeled as:

I i
α→β = gα→β(V

i
m,β − Eα→β)

J

∑
j=1

wijs
j
α, (2.2)

where gα→β and Eα→β are the maximal synaptic conductance and reversal potential

for connections from presynaptic cells of nucleus α to postsynaptic cells of nucleus

β, respectively, with α and β representing STN or GPe. The summation is taken over

cells in nucleus α with the synaptic weight (wij) that project to cell i of nucleus β. For

both STN and GPe cells the kinetics of the rise and decay of the synaptic variable s
j
α

are described by a first order process:

ds
j
α

dt
= Aα(1 − s

j
α)S∞(V

j
m,α)− Bαs

j
α, (2.3)

where S∞(x) = 1/(1+ exp(−(x − θα)/σα)). The kinetic parameters for STN and GPe

are [Aα,Bα,θα,σα] = (5, 1, −9, 8), (2, 0.04, −37, 2), respectively.

2.2.3 Healthy and parkinsonian states of the network

In PD patients and in animal models of PD, electrophysiological changes have been

observed in neurons of the basal ganglia, including a tendency of neurons to dis-

charge in bursts, increased interneuronal synchrony and oscillatory activity (Galvan

and Wichmann [61], and references therein). As demonstrated in Terman et al. [211]

a STN–GPe network model with the above mentioned single cell models can display

correlated rhythmic activity, uncorrelated irregular spiking activity and propagating

waves, depending on the architecture and strengths of synaptic connections between

the STN and GPe, within the GPe and depending on the input to the network. More-

over, they have shown that a STN–GPe network connected via a sparse structured

architecture is able to mimic a healthy situation where cells fire irregularly and activ-

ity is uncorrelated as well as a PD situation where cells fire bursts of action potentials

at low frequency and where activity is highly correlated (clustered). Our network ar-

chitecture has a sparse structured pattern of connections. The network can display

both healthy and PD activity, depending on the strength of the synaptic connections

between the cells and the inputs to them.

We determine appropriate coupling and input parameters such that the network

model activity mimics either the experimentally observed activity in PD or healthy
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conditions. First, we adjust the synaptic strengths for the connections from GPe to

STN, STN to GPe and within the GPe by changing their maximal synaptic con-

ductance (gGPe→STN, gSTN→GPe and gGPe→GPe), and the value of the applied cur-

rent for both cell types (Iapp,STN and Iapp,GPe) to model the PD activity. Except for

gGPe→GPe, we take the values given by Guo and Rubin [69]: Iapp,STN = 0 µA cm−2,

Iapp,GPe = −1.2 µA cm−2, gGPe→STN = 0.9 mS cm−2 and gSTN→GPe = 0.18 mS cm−2.

The value for gGPe→GPe is set to 0.1 mS cm−2.

Second, having parameters such that the network displays PD-like activity, we

look for a different parameter set for the healthy situation. Following the approach

of Rubin and Terman [181], we vary only Iapp,GPe and gGPe→GPe, leaving the other

three parameters (Iapp,STN, gGPe→STN and gSTN→GPe) unchanged, for this transition.

No synaptic plasticity is involved so far.

2.2.4 Synaptic plasticity

The model we described above considers the synaptic weight (wij) between presy-

naptic cell j to a postsynaptic cell i to be static. It is set equal to 1 for all connections,

except for the weak excitatory connections which are set to 0.2. However, several ex-

periments have shown that the strength of synaptic connections changes depending

on the relative spike timing of the pre-synaptic and post-synaptic neurons within

a short time window [27, 56, 127, 132, 192, 231]. This kind of synaptic plasticity is

referred to as spike-timing-dependent plasticity (STDP). Although STDP has been de-

scribed and observed extensively for excitatory synapses, it has also been observed

in inhibitory synapses [71, 86, 227]. Experimental results show alterations in the cou-

pling strength between GPe cells in parkinsonian conditions [158, 195]. In this study,

the inhibitory connections within the GPe cells are subject to STDP. The synaptic

weight (wij) is updated with an additive nearest-spike pair-based STDP rule:

wij(tn+1) = wij(tn) + δ∆wij(∆tij), (2.4)

where δ is the update rate and ∆wij is the synaptic modification, which depends

on the temporal difference ∆tij = ti − tj between the nearest onsets of the spikes of

the pre-synaptic neuron j and post-synaptic neuron i. In experiments, the observed

plasticity time windows, describing the relation between the time difference and

the synaptic modification, vary substantially [40, 71, 86, 227]. Following Popovych

and Tass [171] we use an asymmetric time window for STDP of inhibitory synapses,

given by:
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∆wij(∆tij) =







−β1 exp(−
γ1|∆tij|
τSTDP

), ∆tij ≥ 0,

β2
|∆tij|
τSTDP

exp(−
γ2|∆tij|
τSTDP

), ∆tij < 0.
(2.5)

This is an anti-Hebbian STDP update window (Figure 2.2A), i.e. the synaptic strength

between the GPe cells is potentiated or depressed depending on whether the post-

synaptic spike advances or comes after the pre-synaptic spike, respectively [171].

An anti-Hebbian weight modification is observed for inhibitory synapses [40, 86]. In

our case the weight increase and decrease are independent of the present weight of

a synapse. Therefore, an upper bound of 0.6 and a lower bound of 0.0001 is placed

on each synaptic weight to avoid unbounded growth and negative conductances.
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Figure 2.2 Time window for STDP of inhibitory synapses (A) and its effective time window (B)

as defined by Popovych and Tass [171]. The STDP time window shows the prescribed change in

synaptic weight changes as a function of the time difference between the pre- and post-synaptic

spikes (∆t = tpost − tpre). The synaptic weight is potentiated when a post-synaptic spike precedes

a pre-synaptic spike, and depressed when a pre-synaptic spike precedes a post-synaptic spike.

The effective time windows shows whether on average strengthening (uncorrelated spike trains, ǫ

large) or weakening (correlated spike trains, ǫ small) of the synapse occur for uniformly distributed

∆t ∈ [−ǫ, ǫ].

In Popovych and Tass [171] the net effect of STDP, denoted as ∆w, resulting

from the difference between the time windows for depression and potentiation

[106], is calculated for uniformly distributed relative firing times ∆t in the interval

∆t ∈ [−ǫ,ǫ] by:

∆w(ǫ) =
1

2ǫ

∫ ǫ

−ǫ
∆w(ξ)dξ. (2.6)
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The parameter values for the STDP window can be tuned such that the net effect of

STDP results in down- or up-regulation of the synaptic weights between GPe cells

when they fire in synchrony (∆t is narrowly distributed, i.e. ǫ small) or in uncor-

related manner (∆t is broadly distributed, i.e. ǫ large), respectively [171]. The pa-

rameter values for the STDP window are given in Table 2.1 and gGPe→GPe (maximal

synaptic conductance) is set to 1 mS cm−2 in the simulations with plasticity. Note

that the coupling strength between GPe cells is given by the product of gGPe→GPe and

wij in simulations with STDP, whereas the coupling strength in simulations without

STDP is given by gGPe→GPe.

Table 2.1 Parameters used in implementation of STDP

Parameter Value

β1 1

β2 5

γ1 4

γ2 2

τSTDP 8

δ 0.004

2.2.5 Analysis of network activity

The PD state in our model is characterized by synchronized activity within each clus-

ter and cells firing in a burst-like pattern. These characteristics are readily observed

visually in a raster plot of spike times. However, to quantify the level of network syn-

chrony and burstiness, as well as how they are affected by stimulation and network

parameters, we used the quantitative measures as described next.

Number of principle components

There are several measures that quantify the level of synchrony in the network, i.e.

the extent to which cells in a population (GPe or STN) spike at the same points in

time, including both firing time measures [115, 167, 200] and continuous time mea-

sures [66]. Most of these measures are not really suitable to assess the level of popula-

tion synchrony if the population consists of clusters of cells which fire approximately

synchronously within each cluster. The method proposed in Best et al. [24] is able to

detect the number of synchronized clusters in a population. In short, the method is
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based on principle component analysis (PCA), which means that eigenvectors (vi) of

the covariance matrix for the mean-adjusted voltage traces are computed and subse-

quently sorted by decreasing eigenvalues. Projection of the dataset onto the subspace

generated by the first eigenvectors {v1,v2, . . . ,vn−1,vn}, n ≤ N, where N is the num-

ber of STN (or GPe) cells in the network, captures the maximally possible variance

within an n-dimensional subspace. After a certain linear transformation, n variables

are sufficient to describe a certain percentage of the data. In terms of our network,

if for example two variables will describe most of the population activity, it strongly

suggests the existence of two clusters. The fraction of the variation in the data that is

captured by the subspace spanned by the n largest eigenvectors equals ηn, where

ηn =
λ1 + λ2 + . . . + λn

λ1 + λ2 + . . . + λN
, n ≤ N. (2.7)

We report the number of principal components (eigenvectors) required to capture

at least 90% of the variation in the data. Because of memory issues, we store only

the spike times of the neurons instead of their membrane voltage traces. To perform

PCA, each spike train i is transformed into a continuous waveform x̃i by convolving

each spike with a Gaussian filter with a standard deviation σ = 7.5 ms,

x̃i(t) =
Si

∑
k=1

exp(−
(t − ti

k)
2

σ2
), (2.8)

where Si is the number of spikes in spike train i and ti
k is the spike time of kth spike

in spike train i.

Mean burst rate

The burst rate of individual neurons is estimated as the average burst count over

the last 10 s simulation period. The mean population burst rate is then obtained by

averaging the burst rates of all STN (or GPe) neurons. To detect bursts in the ordered

sequences of spike times we use the modified Poisson surprise method of Hahn et al.

[73] with a minimum surprise index of 1.5 and a minimum number of 3 spikes per

burst.
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2.2.6 Deep brain stimulation

One of our goals is to investigate how high frequency stimulation reshapes the

synaptic conductances in our network model with STDP, thereby changing the firing

pattern. We apply an external stimulation signal Istim to the STN neurons, such that

the equation governing the voltage of a STN cell (Equation 2.1) becomes:

Cm
dVm

dt
=−IL − Iion − Isyn + Iapp + Istim. (2.9)

As in Guo and Rubin [69] the external stimulation signal consists of a train of high

frequency pulses,

P(t) = a0H∞(sin(ω0t)− a1), (2.10)

where H∞(x) = 1/(1 + exp(−1000x)) is a smooth approximation of the Heaviside

step function, a0 is the amplitude of the injected current and t is the time in millisec-

onds. Parameters ω0 = 0.93 and a1 = 0.7, result in a pulse train with a frequency of

148 Hz (1000ω0/2π) and a pulse width of 1.7 ms ((π − 2arcsin(a1))/ω0).

In this study, the pulse train P(t) is administered according to two different proto-

cols. We apply the standard DBS, i.e. continuous stimulation, in which all STN cells

receive exactly the same stimulation signal Istim = P(t). The other protocol is the so

called coordinated reset (CR) stimulation, in which the four STN groups defined in

Section 2.2.2 receive pulse trains via four different stimulation electrodes as show in

Figure 2.3A. During a stimulation interval of length Ts, stimulation at electrode k is

turned on and off as specified by the periodic step function:

Fk(t) = H∞(sin(2π(t − (k − 1)τCR)/ρ))×

H∞(sin(−2π(t − (k − 2)τCR + 1)/ρ)), k = 1, . . . ,4,
(2.11)

where the period of the step function equals ρ = τCR + a2τCR, such that τCR and a2τCR

are the ON period (Fk(t) = 1) and the OFF period (Fk(t) = 0) of the electrode, respec-

tively (Figure 2.3B). We assume that each of the four neurons in a STN group receives

exactly the same stimulation signal Ik
stim = FkP(t), originating only from its own elec-

trode k. Although the stimulation administered at the four different electrodes has

the same period ρ, with the same pulse train supply within the ON period, the ON

periods at the four electrodes do not coincide because of the constant phase shift

between the activation of any two consecutive stimulation electrodes (Figure 2.3B).

This phase shift is set equal to the ON period of the electrode (τCR) in Equation 2.11,
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which implies that a2 ≥ 1 as the off period cannot be shorter than the phase shift. In

our CR-stimulation protocol, we set τCR = 45 ms, which is approximately one fourth

of the period of STN bursting activity.
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Figure 2.3 Stimulation protocol for coordinated reset (CR). (A) Schematic representation of the ad-

ministration of Ik
stim, k = 1, . . . , 4, via four electrodes, indicted by the markers +, to the four STN

groups defined in Section 2.2.2. Each STN group receives its own stimulation signal Ik
stim. (B) Time

series of the stimulation signals. Within stimulation ON periods of length τCR, the stimulation sig-

nal consists of a train of high frequency pulses, given by Equation 2.10. The stimulation signal

vanishes within stimulation OFF periods of length a2τCR. All stimulation signals are identical, but

having a phase shift τCR between any two consecutive numbered stimulation signals. In this exam-

ple τCR = 45 ms and a2 = 3.

2.2.7 Simulation

We implement the STN–GPe network model in MATLAB (Mathworks, Inc., Natick,

MA, USA) and use the Euler method with fixed step size of 0.01 ms to integrate it.

To explore the effect of the coupling strength between GPe cells (gGPe→GPe or winitial)

and Iapp,GPe on the network dynamics, we simulate the network without plasticity

for 12 s and the network with plasticity for 1000 s, for each setting. Stimulation is

only administered to a clustered solution of the network with STDP where the GPe

cells are weakly coupled to each other. Therefore, we set winitial to 0.1 and Iapp,GPe to

−1.2 µA cm−2 in simulations with DBS and we run them for 1600 s with stimulation

starting at t = 1020 s. Only the last 10 s of each simulation are used to compute the

mean burst rate and the number of principle components.
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2.3 Results

2.3.1 The STN–GPe network without plasticity

To obtain PD activity in the structured sparse connected network of 16 STN and 16

GPe cells without synaptic plasticity we adopted the parameters for coupling and the

applied currents parameters from Guo and Rubin [69], except for gGPe→GPe which

was set to 0.1 mS cm−2. Using these values, the STN cells in our network segregate

into two rhythmically bursting clusters (checkerboard pattern), with synchronized

activity within each cluster. In particular, the STN neurons within the same group of

subpopulation 1 (Figure 2.1) and neurons in the corresponding group of subpopu-

lation 2 synchronize their (bursting) activity. GPe cells in our network show similar

clustering and bursting, see Figure 2.4B. This is in accordance with the results re-

ported in Guo and Rubin [69]. We need 2 PCA components for each population to

capture 90% of the activity, reflecting the checkerboard activity (Figure 2.4C and D).

In both STN and GPe populations the mean burst rate is approximately 5 Hz (Fig-

ure 2.4E and F).

This clustering may be understood directly from the network architecture. Sup-

pose that cells of group STN 1 excite cells of group GPe 2 to initiate firing (Figure 2.1).

As a result, the cells of GPe 2 inhibit the cells of STN 2 and prevent them from firing

if the inhibition is strong enough. We are now in a situation where only cells of clus-

ter ‘1’ (STN 1 and GPe 2) are active. Once the cells of STN 2 escape this suppression,

their firing excites cells of GPe 1, which in turn represses cells of STN 1. The cells

of cluster ‘1’ become silent and the cells of cluster ‘2’ (STN 2 and GPe 1) are active.

The cycle repeats with the roles of the clusters reversed. The mechanism underlying

the escape of the STN cells from their suppressed state is the deinactivation of the

inward IT current [24, 211]. Persistent inhibition from the GPe cells results in an in-

crease of the availability of IT current in the STN cells, and allows the alternation of

the clusters.

On one hand, the amount of inhibition from the GPe cells to the STN cells is cru-

cial for the generation of clustered rhythmic activity. If, for example, the inhibitory

connections within the GPe cells, gGPe→GPe, is high, then the GPe cells of cluster

‘1’ will not be able to sufficiently inhibit the STN cells in the other cluster, causing

them to escape and fire rebound bursts before the first cluster has completed. On the

other hand, oscillatory activity within the reciprocally connected STN–GPe network

can only emerge when STN cells become sufficiently active and the spontaneous fir-

ing of the GPe cells cannot counterbalance it. The strength of the applied current

to the GPe neurons, Iapp,GPe, representing the net input from other brain structures,

controls its spontaneous firing rate. Thus, lowering the inhibitory input Iapp,GPe or
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Figure 2.4 Behavior of the network without STDP for different choices for Iapp,GPe and gGPe→GPe.

(A) and (B) show the spike times for all sixteen STN and GPe cells, illustrating the activity of the

network in the two points indicated by ⋆ and • in (C)–(F). These points represent the healthy and

PD state, respectively. In the healthy state the firing patterns of both types of cells are irregular

and uncorrelated. In the PD state, cells fire in a bursty an clustered pattern around 5 Hz. The cell

numbers correspond to the numbers in Figure 2.1. (C) and (D) are 3D contour plots of the number

of PCA components required to capture at least 90% of the GPe and STN activity, respectively. (E)

and (F) are contour plots of the mean burst rate of GPe and STN, respectively.
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increasing the value of gGPe→GPe can lead to the transition from a PD state to a more

healthy state where the activity is irregular and uncorrelated. Due to dopamine loss

in the striatum the level of inhibition to GPe is higher than in the healthy situation,

which motivated the former parameter change. Rubin and Terman [181] based the

change in intra-GPe inhibitory synaptic conductance on experimental results in rats

[158, 195]. However, changes in conductances can either be the result of altered ac-

tivity (via plasticity) or its cause [114].

In Figure 2.4A, gGPe→GPe is increased from 0.1 to 0.45 mS cm−2 and Iapp,GPe is in-

creased from −1.2 to −0.6 µA cm−2. As can be seen from the spike time raster plot of

all sixteen STN and sixteen GPe, all cells display irregular firing times that are only

weakly correlated. The activity in Figure 2.4A represents the healthy state of our net-

work. For the GPe cells 11 PCA components (Figure 2.4C) are needed to capture 90%

of the activity. For the STN cells 14 components are needed (Figure 2.4D), meaning

that there is slightly more correlation between the GPe cells than between STN cells.

The firing pattern of both cell types in the healthy state is less bursty (mean burst

rate of 1–2 Hz) than in the PD state (mean burst rate of 5 Hz).

Figures 2.4C and D show how the level of synchrony in the GPe and STN changes

as a function of Iapp,GPe and gGPe→GPe. For both types of cells we distinguish clearly

between two regions: one where almost all the components (10–14) are needed and

one where only two components are needed. The region where we need 2 PCA

components represents a synchronized state, whereas the other region represents

a desynchronized state. The transition from the synchronized state to the desyn-

chronized state is sharp when we increase gGPe→GPe and keep Iapp,GPe constant. The

applied current Iapp,GPe has a minor effect on the level of synchrony.

Figures 2.4E and F show the mean burst rate of the GPe and STN population as

function of Iapp,GPe and gGPe→GPe. For both populations, the mean burst rate de-

pends mainly on gGPe→GPe. The STN and GPe bursting reduces quickly when the

intra-GPe inhibitory synaptic conductance reaches a certain threshold. This thresh-

old is around 0.25 mS cm−2 and depends mildly on Iapp,GPe.

2.3.2 The STN–GPe network with plasticity

The above mentioned results were obtained with a network where the synaptic con-

nections between the cells are static. This network exhibits a healthy state character-

ized by desynchronized activity of both cell types and strong coupling between the

GPe cells, and a PD state characterized by synchronized clusters of both cell types

and weak coupling between the GPe cells. Thus, crucial for the network state is the

synaptic strength of the inhibitory connections within the GPe. When these connec-
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tions are regulated by a STDP rule, it may contribute to the stabilization of these

states. These may coexist for the same value Iapp,GPe so that STDP leads to multiple

stable synchronized and desynchronized states [171]. If STDP plays a role, it should

support desynchronized dynamics in the healthy state and synchronized dynamics

in the PD state. This would be the case if in the healthy state potentiation of the

synaptic weights between GPe cells is favored, whereas in the PD state depression

of these weights is favored.

Depending on the initial coupling strength between GPe cells, the network reaches

either a stable healthy state (Figure 2.5A, winitial = 0.35) or a stable PD state (Fig-

ure 2.5B, winitial = 0.1). As expected, the synchronized dynamics of the PD state re-

sults in depression of almost all synaptic weights, thereby stabilizing the PD state

(Figure 2.5B). The synaptic weights of connections between GPe cells of different

clusters are not depressed, because the differences between their spike times are too

large for the STDP rule. Although a number of weights strongly decay from their

initial value in the healthy state, the mean synaptic weight is higher than initially

(Figure 2.5A). Therefore, STDP has a positive effect in stabilizing the healthy state.

The observed bimodal distribution of the weights in the healthy state is character-

istic for uncorrelated spike trains subject to an additive STDP rule as we used here

[147].

The effect of the initial coupling strength (winitial) and Iapp,GPe on the final syn-

chrony level (Figure 2.5C) and the mean burst rate (Figure 2.5D) of GPe cells are

comparable to the corresponding result in the network without STDP where the cou-

pling strength is fixed and given by gGPe→GPe (Figure 2.4C and E, respectively). A

major difference is that for high Iapp,GPe and low winitial the network with STPD ap-

proaches the healthy state, whereas the network without STDP displays PD activity

here. Thus, starting with winitial low and Iapp,GPe high results in network dynam-

ics that is not perfectly clustered at the beginning of the simulation. Due to STDP,

this leads to potentiation of the weights, which in turn, further supports the de-

clustering, which finally results in a stable desynchronized healthy state. On the

other hand, the nearly clustered dynamics in a network without STDP is in the basin

of attraction of the stable clustered PD state. STN cells show similar behavior (data

not shown).

2.3.3 Continuous stimulation versus CR-stimulation

Depending on the original firing pattern, the network with STDP is ‘learning’ either

pathological or healthy dynamics by adapting its pattern of the synaptic couplings

between the GPe cells. As stimulation can change the firing pattern of the stimulated
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Figure 2.5 Behavior of the network with STDP for different choices for Iapp,GPe and winitial. (A) and

(B) illustrating the activity of the network in the two points indicated by ⋆ and • in (C)–(D), repre-

senting the healthy and PD state, respectively. The top panels show the raster plot of both cell types

and the bottom panels show the time courses of the synaptic weights and the mean synaptic weight

(red dashed line). The healthy state is characterized by asynchronous activity of both cell types and

strong coupling between the GPe cells, whereas the PD state is characterized by synchronized clus-

ters of both cell types and weak coupling between the GPe cells. The cell numbers correspond to the

numbers in Figure 2.1. (C) and (D) are contour plots of the number of PCA components required to

capture at least 90% of the GPe activity and the mean burst rate of GPe, respectively.
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cells, it can be used to ‘teach’ the network with STDP to display more healthy ac-

tivity. To illustrate the effect of continuous stimulation and CR-stimulation we first

consider the STN–GPe network with STDP in a clustered solution where the GPe

cells are weakly coupled to each other, see top panel of Figure 2.5B. For continuous

stimulation all STN cells are locked to half of the stimulation frequency, which in

turn, drives the GPe cells in the same tonic mode at 74 Hz (Figure 2.6A, bottom left).

During continuous stimulation, the synaptic weights between the GPe cells quickly

decay as a result of the synchronized activity of the GPe cells (Figure 2.6A, top).

When the continuous stimulation is removed, the weights remain low. Continuous

stimulation shifts the network from the two-cluster state to an even more synchro-

nized state where all cells are perfectly synchronized and fire periodically at a rate

of 21 Hz (Figure 2.6A, bottom right).

For the CR-stimulation we set a2 to 3, such that it corresponds to the CR-protocol

as proposed by Tass and colleagues. Now, the first stimulation site is turned on again

when the last stimulation is turned off, i.e. during a cycle of length ρ = 4τCR each

stimulation site is turned on once (Figure 2.3). The bottom left panel in Figure 2.6B

shows the spike times of both cell types during CR-stimulation. Both cell types are

entrained to the CR inputs, however, they sometimes fire single spikes in the OFF pe-

riod of their stimulation site. This causes some desynchronization within the clusters,

which in turn, leads to a gradually rise of mean synaptic weight during stimulation

(Figure 2.6B, top). When CR-stimulation is switched off, the mean synaptic weight

keeps rising until it reaches a value around 0.35. The distribution of the weights

shows a similar bimodal distribution as we observed in the healthy state of the net-

work (Figure 2.5A, bottom) and seems stable. Accordingly, the CR-stimulation steers

the network away from a stable PD state to a stable healthy state (Figure 2.6B, bottom

right).

2.3.4 Robustness of CR-stimulation

The above results show that CR-stimulation applied to a network with STDP in the

PD state can reinforce the mean synaptic weight between GPe cells during stimula-

tion. This results in a long-lasting redistribution of the weights and desynchroniza-

tion corresponding to the healthy state. We test the robustness of the long-lasting

effects of CR-stimulation with respect to the stimulation duration and amplitude

as well as variation in the OFF period of the stimulation sites, which is controlled

by a2 (Equation 2.11). Figure 2.7 illustrates for three OFF periods the dependence

of the effectiveness of CR-stimulation on stimulation duration and amplitude, via

the number of PCA components and the mean burst rate measures for STN activity
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Figure 2.6 Effect of continuous stimulation (A) and CR-stimulation with a2 = 3 (B) on the network

activity. Stimulation is on from 1020 to 1095 s indicated by a green and a red arrow. Pulse train (2.10)

is applied at 148 Hz with amplitude 100 µA cm−2 and pulse width of 1.7 ms. In both (A) and (B),

the top panel shows the time courses of the synaptic weights and the mean synaptic weight (red

dashed line). The bottom panels show spike times of both cell types during (left) and after (right)

stimulation.
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as described above. The CR-stimulation is considered effective when it induces the

healthy state. Note that the healthy state in Figure 2.7 corresponds to regions where

at least 10 PCA components are needed to capture 90% of the activity and where

STN has a mean burst rate of lower than 2 Hz.

For the original CR-protocol as proposed by Tass and colleagues the stimulation

is effective in the long duration, high amplitude region of the parameter space, see

Figure 2.7A. As expected, the PCA and mean burst rate show that the stimulation

duration and the amplitude used in Figure 2.6B belongs to the effective region of

parameter choices, see Figure 2.7A, marker +.

Figure 2.8 depicts four examples of network dynamics from the region of parame-

ter choices in Figure 2.7A (markers *) where CR-stimulation is not effective. For very

low amplitude the clustering and bursting remains after stimulation (Figure 2.8A,

right), whereas for slightly higher amplitude the bursting but not the clustering dis-

appears after stimulation (Figure 2.8B, right). However, in both cases there is a phase

shift between the checkerboard pattern of subpopulation 1 and the checkerboard

pattern of subpopulation 2, such that we have a four-cluster state. This phase shift

explains the reason why we need 4 PCA components to describe the STN activity

in Figure 2.7A. For both cases the corresponding time course of the mean synaptic

weight remains low (Figure 2.8A and B, left). Interestingly, the weights approach

two different stable plateaus after stimulation with an amplitude of 60 µA cm−2 and

duration of 75 s (Figure 2.8B, left), which may explain the disappearing of the bursts

(two spikes instead of three spikes). Similar weight distribution and spike behavior

is obtained when stimulation is applied with a higher amplitude (100 µA cm−2), but

a shorter duration (10 s), see Figure 2.8C. When we increase the duration from 10 s

to 30 s, the CR-stimulation is only effective for subpopulation 2 (Figure 2.8D).

For the CR-protocol with OFF period 1.5τCR, the ON periods of the stimulation

sites partially overlap with each other, leading to stimulation that is less desyn-

chronous and closer to continuous. As can be seen from Figure 2.7B the stimulation

is less effective compared to the original CR-protocol. Remarkable is the observa-

tion that one of the low amplitudes is effective and that it becomes ineffective when

the amplitude is too high. When the OFF period is long, e.g. 3.8τCR, the stimulation

does not work across the range of amplitude and duration we consider here. This is

explained by the fact that for a2 > 3, there is a period in which the whole network re-

ceives no stimulation. If this period is long, the weights may return to their original

values of the PD state.
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Figure 2.7 Effectiveness of CR-stimulation, measured via the number of PCA components (color

coded and explicit indicated in each circle) and mean burst rate (circle outline coded) for STN activ-

ity, for three OFF periods over a range of stimulation durations and amplitudes. (A) a2 = 3: original

CR-protocol; (B) a2 = 1.5: ON periods partially overlap; (C) a2 = 3.8: contains a stimulus free period

after each stimulation cycle. Healthy activity corresponds to regions where at least 10 PCA com-

ponents are needed and where the mean burst rate is lower than 2. Pulse train (2.10) is applied at

148 Hz with pulse width of 1.7 ms. The markers + and ∗ indicate the stimulation settings used in

Figure 2.6B and 2.8, respectively.
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Figure 2.8 Response of the network in PD to different ineffective CR-stimulation amplitudes a0

(µA cm−2) and durations Ts (s). (A) a0 = 20 and Ts = 75; (B) a0 = 60 and Ts = 75; (C) a0 = 100 and

Ts = 10; (D) a0 = 100 and Ts = 30. For each setting the time courses of the synaptic weights (left, red

dashed line corresponds to the mean) and the raster plot of both cell types after stimulation (right)

are shown. The other CR-stimulation parameters are as in Figure 2.6B.



40 2 The effect of STDP in the basal ganglia

2.4 Discussion

In this Chapter we have investigated, with a biophysically plausible model, the role

of synaptic plasticity in stabilizing firing patterns in the basal ganglia. In particular,

we used an existing network of synaptically-connected, conductance-based model

cells from the STN and GPe [69, 181, 211], which we have extended with spike-

timing-dependent plasticity (STDP). The original STN–GPe network model displays

PD or healthy activity with a structured, sparsely connected network architecture by

choosing appropriate parameter values for the coupling strengths and appropriate

bias currents to both cell types. The healthy state is characterized by asynchronous

activity of both cell types and strong coupling between the GPe cells, whereas the PD

state is characterized by synchronized clusters of both cell types and weak coupling

between the GPe cells (Figure 2.4). Implementing a STDP rule for the inhibitory con-

nections between the GPe cells, leads to the stabilization of both states (Figure 2.5).

Moreover, our results suggest that CR-stimulation may profit from STDP to teach

the network to fire in a less pathological manner. The CR-stimulation should be

as desynchronous as possible and applied sufficiently long with sufficiently high

amplitude to be effective (Figure 2.7). In contrast, STDP has a negative effect when

continuous stimulation is employed, in the sense that the network becomes more

synchronized after the stimulation (Figure 2.6A).

In order to contribute to the stabilization of the network states, the STDP rule for

the inhibitory connections between the GPe cells should have the property that it

down- or up-regulates the synaptic weight between GPe cells when they fire in syn-

chrony or in an uncorrelated manner, respectively. The desynchronized dynamics

in the healthy state and synchronized dynamics in the PD state is then supported.

This can be achieved by choosing a time window for STDP such that the net effect

of STDP results in the desired up/down regulation of the synaptic weights. It is not

crucial which time window for STDP, e.g. Hebbian or anti-Hebbian and symmetric

or asymmetric, is chosen as long as the effective time window is comparable to Fig-

ure 2.2. We realize that this is a strong assumption which needs to be verified in an

experimental setting.

Guo and Rubin [69] investigated, using a similar STN–GPe network, the effect

of CR-stimulation on the relay function of the thalamus. From their simulations they

conclude that CR-stimulation can change the firing pattern of STN cells in a way that

it restores the thalamus relay fidelity during stimulation. However, they do not have

synaptic plasticity in the network model. As a consequence, the network quickly

returns to the clustered PD state when stimulation is switched off, thereby disrupt-

ing the relay function of the thalamus again. As we already mentioned in the intro-

duction of this chapter, Hauptmann and Tass [82] use a simplified network of only
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STN cells, where all cells are coupled to each other via STDP-controlled excitatory

synapses, to explore the performance of CR-stimulation in terms of its desynchroniz-

ing effect on the synchronized STN bursts. They show that desynchronizing stimuli

can lead to down-regulation of the synaptic connection within the STN as a conse-

quence of the STDP rule, which in turn supports the desynchronization of the STN

bursts and finally results in a stable healthy state where bursts are uncorrelated. As

we already put forward, the all-to-all connections within the STN are highly ques-

tionable. We have shown that through indirect, synaptic-mediated stimulation the

synaptic connections within the GPe cells can be reshaped as a consequence of the

STDP rule, such that desynchronization of the GPe cells occur, which in turn results

in desynchronization of the STN cells. We add to the results of Hauptmann and Tass

[82] that the redistribution of the synaptic weights within the GPe can be the working

mechanism of CR-simulation administered to STN cells.

In Popovych and Tass [171], indirect, synaptic-mediated CR-stimulation was

also considered for a network of spiking Hodgkin–Huxley neurons. Each neuron

was connected to all other neurons via STDP-controlled inhibitory and excitatory

synapses. Instead of explicit modeling and stimulating the target population, they

modeled the stimulation-induced activity as post-synaptic potentials to the popu-

lation of Hodgkin–Huxley neurons. They concluded that both direct electrical and

indirect, synaptic-mediated CR-stimulation applied to strongly coupled and syn-

chronized population of spiking neurons can lead to long-lasting redistribution of

the synaptic weights and desynchronization. In contrast to this work, we explicit

model a target population (STN) for direct electrical CR-stimulation that is recip-

rocally and synaptically connected to another population (GPe) with intranuclear

STDP-controlled synapses.

Experimental studies have linked synchronization in the basal ganglia-thalamo-

cortical circuit that occurs at frequencies within the 3–10 Hz band [44, 120, 197, 207]

and beta band (13–30 Hz) [111, 113, 175, 223] with PD. The beta (13–30 Hz) oscilla-

tions are probably driven from the motor areas of the cortex, but at tremor frequen-

cies (i.e. 3–10 Hz) it is the opposite direction of connectivity that dominates the syn-

chronized activity [32]. It has been shown that the hyperdirect cortico-subthalamic

pathway can be crucial for the expression of abnormal beta oscillations in the STN–

GPe network in parkinsonism [131]. Recently, Yamawaki et al. [228] have shown

that low frequency stimulation of glutamatergic STN afferents enhances the synap-

tic efficacy in dopamine-intact brain slice of rat and that high frequency stimula-

tion depresses the synaptic efficacy in dopamine-depleted tissue. They propose that

dopamine-depletion leads to increase in weight of cortico-subthalamic synapses,

which in turn promotes the transmission of pathological cortical activity to STN.

Moreover, their results suggest that the mechanism of the therapeutic effect of STN–
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DBS in PD is to depress the cortico-subthalamic synapses. The model of Hahn and

McIntyre [72] was able to switch from parkinsonian to healthy activity by reducing

the influence of the cortical beta input. In our model we only observe tremor related

oscillations, therefore it would be interesting to extend our model with connections

from the cortex to STN (hyperdirect pathway) and subject these excitatory connec-

tions to STDP.



CHAPTER 3

The pedunculopontine nucleus as an additional

target for deep brain stimulation

Abstract The pedunculopontine nucleus (PPN) has been suggested as a target for

DBS. In this Chapter we propose a single compartment computational model for

a PPN Type I cell and compare its dynamic behavior with experimental data. The

model shows bursts after a period of hyperpolarization and spontaneous firing at

8 Hz. Bifurcation analysis of the single PPN cell shows bistability of fast and slow

spiking solutions for a range of applied currents. A network model for STN, GPe and

GPi produces basal ganglia output that is used as input for the PPN cell. The conduc-

tances for projections from the STN and the GPi to the PPN are determined from ex-

perimental data. The resulting behavior of the PPN cell is studied under normal and

parkinsonian conditions of the basal ganglia network. The effect of high frequency

stimulation of the STN is considered as well as the effect of combined high frequency

stimulation of the STN and the PPN at various frequencies. The relay properties of

the PPN cell demonstrate that the combined high frequency stimulation of STN and

low frequency (10 Hz, 25 Hz, 40 Hz) stimulation of PPN hardly improves the effect

of exclusive STN stimulation. Moreover, PPN–DBS at low stimulation amplitude has

a better effect than at higher stimulation amplitude. The effect of PPN output on the

basal ganglia is investigated, in particular the effect of STN–DBS and/or PPN–DBS

on the pathological firing pattern of STN and GPe cells. PPN–DBS eliminates the

pathological firing pattern of STN and GPe cells, whereas STN–DBS and combined

STN–DBS and PPN–DBS eliminate the pathological firing pattern only from STN

cells1.

1 Adapted from M. A. J. Lourens, H. G. E. Meijer, T. Heida, E. Marani, and S. A. van Gils. The

pedunculopontine nucleus as an additional target for deep brain stimulation. Neural Networks,

24(6):617630, 2011.
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3.1 Introduction

Currently, deep brain stimulation (DBS) for Parkinson’s disease (PD) is widely ap-

plied in the subthalamic nucleus (STN), the globus pallidus pars interna (GPi) and

the ventral intermediate thalamic nucleus. For many patients STN/GPi–DBS is suc-

cessful for cardinal symptoms, but has only limited effect for axial symptoms, such

as gait disturbances and postural instability. Stimulation of these targets mainly af-

fects the thalamocortical output of the basal ganglia to cortical motor areas, whereas

the axial muscles involved in locomotion and posture are mainly controlled from the

brain stem [154]. These symptoms are particularly resistant to dopaminergic drugs.

This suggests the involvement of non-dopaminergic pathways in the pathophysiol-

ogy of these symptoms [77]. Since the pedunculopontine nucleus (PPN) in the brain

stem connects to nuclei in the basal ganglia and the spinal cord and its role in loco-

motion and postural control [77, 161], this nucleus has been suggested as a target for

DBS to improve gait and postural instability [169].

The PPN is a rostral brain stem structure consisting of cholinergic and non-

cholinergic neurons belonging to the ascending reticular activating system and

the mesencephalic locomotor region [138]. The PPN can be subdivided into two

parts based on neuron density and neurochemical characteristics: the pars com-

pacta (PPNc) and the pars dissipata (PPNd) [160]. The PPNc consists mainly of large

cholinergic neurons [98]. The PPNd consists of small and medium sized neurons

with approximately the same number of cholinergic and non-cholinergic neurons

[77]. Non-cholinergic PPN neurons are mostly glutamatergic, but also noradrener-

gic, dopaminergic, GABAergic (interneurons) and peptidergic [161].

The main input from the basal ganglia to the PPN are the GABAergic projection

from GPi and the substantia nigra pars compacta (SNc), predominantly to the non-

cholinergic neurons of the PPNd [161]. The glutamatergic neurons of the PPNd play

an important role in the regulation of the basal ganglia and spinal cord [161]. The

cholinergic PPNc is a principal component in a feedback loop from the spinal cord

and limbic system back into the basal ganglia and thalamus [161].

Three types (I, II and III) of the PPN neurons have been characterized based on

their intrinsic electrical membrane properties as obtained from intracellular record-

ing [105, 202–204]. Type I neurons are characterized by low threshold calcium spikes

(LTS), which give rise to a burst of fast action potentials after the offset of a hyper-

polarizing current. The neurons also fire bursts of spikes when a depolarized stimu-

lus is given during hyperpolarization. Type I neurons are non-cholinergic [105] and

probably glutamatergic [203]. Type II neurons do not burst, but instead they fire

single action potentials with a large afterhyperpolarization in response to a depo-
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larizing injected current. About 50% of type II neurons are cholinergic. Type III has

neither the characteristics of both Type I and Type II.

In contrast to the high frequency stimulation of STN/GPi, stimulation of PPN

should be applied with low frequency (20–25 Hz) to improve gait disturbances and

postural instability [134, 169]. For these symptoms low frequency stimulation of the

PPN combined with standard DBS of the STN seems to be clinically more effective

[60, 196]. So the question arises why PPN should be stimulated at low frequencies.

Despite real therapeutic successes, the fundamental physiological mechanisms un-

derlying the effect of DBS are still not understood.

Pathophysiology of PD is characterized by increased firing rates of cells in the

basal ganglia, a tendency towards bursting and abnormal synchronization in the

cells of STN and GP [32]. In particular, the synchronization at low frequencies (<30)

are thought to be related to motor impairment in PD [32]. A hypothesis is that high

frequency stimulation of basal ganglia nuclei masks the pathological synchronized

firing patterns of the basal ganglia with a regularized firing pattern. In the usual

targets for high frequency stimulation in the basal ganglia, the neurons fire spon-

taneously at frequencies around 50 Hz and can easily follow the high frequencies

of the stimulation. By following the high frequencies of the stimulation, the basal

ganglia neurons are driving in a tonic mode, that prevents them relapsing into the

pathological synchronized firing pattern. On the other hand, PPN neurons fire spon-

taneously at lower frequencies around 10 Hz and high frequency stimulation would

probably silence rather than drive them. Androulidakis et al. [7, 8] shows that when

akinesia is successfully alleviated in PD by L-Dopa, this is associated with the return

of a 10 Hz component in the correlation between the PPN and the sensorimotor cor-

tex. It seems that low frequency stimulation will assist PPN to return to its natural

10 Hz oscillations, which in turn facilitates locomotion and postural control.

The aim of this Chapter is to investigate, with a computational model, how the

PPN responds to physiological and pathological inputs of the basal ganglia. More-

over, we will investigate the effects of DBS in STN and PPN on the behavior of the

network. To achieve this aim we first develop a computational conductance-based

model for PPN, as such model is not yet available. We model PPN Type I neurons,

because projections from the basal ganglia are primarily to the glutamatergic PPN

neurons (Type I) and these neurons provide the prominent descending PPN output

to the spinal cord. Second, we generate basal ganglia input to the PPN Type I model

using the basal ganglia model as proposed by Rubin and Terman [181]. The model of

Rubin and Terman [181] has well defined physiological and pathological (parkinso-

nian) states. To investigate the effect of STN–DBS and/or PPN–DBS we look at relay

capability of the PPN cell to relay excitatory cortical input. Finally we make projec-
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tions from the PPN back to the basal ganglia to investigate the effect of STN–DBS

and/or PPN–DBS on the pathological firing pattern of STN and GPe cells.

3.2 Methods

3.2.1 PPN model

We have modeled the PPN Type I neuron as a single compartment model. Based

on the work of Takakusaki and Kitai [202] we include in our model a persistent

sodium current (INa,p) and T-type calcium current (IT). The persistent sodium cur-

rent is responsible for subthreshold membrane oscillations in PPN Type I neurons,

which underlies spontaneous repetitive firing. T-type calcium current is responsi-

ble for bursts of low threshold spikes. To produce action potentials in response to

depolarizing current the model includes a sodium current (INa) and potassium cur-

rent (IK). The resting potential is defined by sodium (INa,L) and potassium (IK,L) leak

currents. In addition the model contains a hyperpolarization-activated current (Ihyp)

to recover faster from hyperpolarization and facilitate the burst. The time-derivative

of the membrane potential (Vm,PPN) of the PPN type I neuron is given by:

C
dVm,PPN

dt
= −INa,L − IK,L − INa − IK − IT − Ihyp − INa,p + Iapp, (3.1)

where C is the membrane capacitance, Iapp is the applied current. The ionic currents

are conductance-based and described according to the Hodgkin–Huxley formalism,

except for the T-type calcium current which includes the Goldman–Hodgkin–Katz

ion current equation (Appendix B). The exact voltage dependence and kinetics of

PPN ionic currents are based on similar neurons, namely the thalamocortical relay

neuron [48, 88, 135] and the pre-Bötzinger neuron [182, 183], as there are no reports

in literature of such data for the PPN.

3.2.2 The Network model

In order to investigate the effect of the basal ganglia input to the PPN cell, we

have generated such input using the basal ganglia model as proposed by Rubin and

Terman [181]. They modeled the indirect pathway of the basal ganglia that includes a

population of STN, GPe, GPi and thalamic relay cells. In their model each STN, GPe

and GPi cell is represented as a single compartment conductance-based model. Our
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network consist of 8 STN cells, 8 GPe cells, 8 GPi cells and 1 PPN cell and excludes

the thalamic relay cells.

For the synaptic connections between the STN and GPe cells we use the structured

sparsely connected architecture (Figure 3.1), as in Terman et al. [211]. This network

can reproduce both correlated rhythmic activity (clustered) and uncorrelated spik-

ing. Each STN cell receives inhibitory input from two GPe cells. Each GPe cell re-

ceives excitatory input from one STN cell and inhibitory input from two immediate

GPe neighbors. Each GPe cell also receives a constant current input representing stri-

atal input. Each GPi cell receives excitatory input from one STN cell and inhibitory

input from one GPe cell [181]. Finally, four STN cells and four GPi cells project exci-

tatory (glutamatergic) respectively inhibitory (GABAergic) to the PPN cell, see Fig-

ure 3.1. As in Rubin and Terman [181] the synaptic current to the PPN is modeled

as:

Iα→PPN = gα→PPN(Vm,PPN − Eα→PPN)∑
j∈J

s
j
α, (3.2)

where Iα→PPN is the synaptic current from structure α to the PPN cell, α is STN or

GPi, gα→PPN is the maximal synaptic conductance and Eα→PPN the reversal potential.

For STN we take gSTN→PPN = 0.15 mS cm−2 and ESTN→PPN = 0 mV, and for GPi we

take gGPi→PPN = 0.1 mS cm−2 and EGPi→PPN = −95 mV. The summation is taken

over the subgroup of STN/GPi cells (J) that project to the PPN cell. Each synaptic

variable s
j
α satisfies a first-order differential equation of the form:

ds
j
α

dt
= Aα(1 − s

j
α)S∞(V

j
m,α)− Bαs

j
α, (3.3)

where S∞(x) = 1/(1+ exp(−(x − θα)/σα)). The kinetic parameters for STN and GPi

are [Aα,Bα,θα,σα] = (5, 1, −9, 8), (2, 0.1, −37, 2), respectively.

3.2.3 Normal and parkinsonian states of the basal ganglia

Depending on the architecture and strengths of synaptic connections between the

STN and GPe, within the GPe, and the striatal input to the STN–GPe network the

model shows correlated rhythmic activity, uncorrelated spiking and propagating

waves. It has been found in experiments that during PD there is an increased syn-

chrony between nuclei in the basal ganglia while neurons fire in a bursty mode.

As demonstrated in Terman et al. [211], STN and GPe cells connected through a
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GPe

STN

PPN

GPi

Striatal input

21 3 4 5 6 7 8

Glutamate

GABA

Figure 3.1 The network architecture. For the STN–GPe connection the structured sparsely architec-

ture from Terman et al. [211] is adopted. GPe cell i inhibits its two immediate GPe neighbors (i + 1

and i− 1) as well as two STN cells (i− 2 and i+ 2) by skipping the three STN cells located nearest to

it. Here i runs from 1 to 8. In addition, GPe cells uniformly receive constant current inhibition from

striatum. Each STN cell sends excitation to its nearest GPe cell (same index). Each GPi cell receives

inhibition from the nearest GPe cell and excitation from the nearest STN cell. The PPN cell receives

inhibition from GPi cell 1,2,5 and 6 and excitation from STN cell 1,2,5 and 6. In our PD simulations

the STN cells 1, 2, 5 and 6 are active as a cluster. In our network of section 3.2.6 the PPN cell sends

also excitation to STN cell 1, 2, 3 and 4. The network architecture has a periodic structure. Lines

ending with arrows and open circles indicate excitatory glutamatergic and inhibitory GABAergic

synaptic connections, respectively.

structured sparse architecture can fire irregularly with weak correlation between

the cells as well as in clusters with high correlation between the cells. By using a

structured sparse architecture we mimic a basal ganglia input to the PPN cell that

represents a normal (uncorrelated spiking) or PD (correlated rhythmic activity) situ-

ation, see top and middle panels of Figure 3.2. Following the approach of Pirini et al.

[168], Rubin and Terman [181], only two parameters are used to switch between

the normal and the PD state: the indirect striatal current to GPe cells (Istriatum→GPe)

and the intra-GPe inhibitory synaptic conductance (gGPe→GPe). In the normal state

we use Istriatum→GPe = 1.1 µA cm−2 and gGPe→GPe = 1 mS cm−2. In the PD state

Istriatum→GPe = −3.5 µA cm−2 and gGPe→GPe = 0.05 mS cm−2. The increase in in-

hibitory striatal input to the GPe in PD is motivated by the fact that the activation of

the D2-receptors in the striatum in PD is decreased, due to dopamine depletion in

PD. This decreased activation leads to less inhibition of the striatal input to the GPe.

Rubin and Terman [181] motivated the decrease of the intra-GPe inhibitory synaptic

conductance in PD on experimental results in rats [158, 195].
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Figure 3.2 Raster plots of the spike times for all eight STN cells (A) and all eight GPi cells (B) in

the normal (top), PD (middle) and PD with STN–DBS (bottom) state. In the normal state the firing

patterns of both types of cells are irregular and uncorrelated. In the PD state STN cells fire in a

bursty and clustered pattern around 3 Hz and the cells within each cluster are almost synchronized

(small lag). The GPi cells fire in a similar manner, but are less bursty. In the PD state with STN–DBS

the STN cells are locked to the DBS frequency and GPi cells are partially locked by half the DBS

frequency.

3.2.4 Deep brain stimulation

In our network model we apply DBS to STN and PPN. As in Rubin and Terman [181]

the effect of DBS on its target cells is modeled as a train of positive current pulses,

injected directly into the target cells:

IDBS = iDH∞(sin(2π fDBSt))(1− H∞(sin(2π fDBS(t + δDBS)))), (3.4)

where H∞(x) = 1/(1 + exp(−1000x)) is a smooth approximation of the Heaviside

step function, iD is the amplitude of the injected current, fDBS is the frequency of the

DBS pulse train and δDBS is the duration of each impulse.
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In the case of STN–DBS we assume that each STN cell receives the same DBS sig-

nal. STN–DBS is only applied in the PD state, with iD = 400 µA cm−2, fDBS = 130 Hz

and δDBS = 0.15 ms. Pirini et al. [168] have demonstrated that these values for STN–

DBS ensure a 1:1 ratio between DBS pulses and the action potentials of the STN cells

(Figure 3.2A, bottom).

Our PPN cell receives DBS in the PD state of the network as well in the PD with

STN–DBS state, as the combined stimulation seems to be clinically more effective

[60, 196]. The settings for PPN–DBS are δDBS = 0.15 ms, fDBS = 10–25–40 Hz and

iD = 10–100 µA cm−2. We use these frequencies as it was claimed that 25 Hz was

optimal [134, 169].

3.2.5 Cortical input

In addition to input from the basal ganglia the PPN Type I cell also receives excitatory

cortical input [98]. To investigate the functionality of the PPN cell under normal,

parkinsonian, parkinsonian with STN–DBS and/or PPN–DBS conditions, we test the

relay capability of the PPN cell with excitatory, conductance-based, synaptic current

ICort.:

ICort. = gCort.s(Vm,PPN − EGlut.), (3.5)

where s is the synaptic variable of the presynaptic cortex cell. The maximal conduc-

tance (gCort.) and the reversal potential (EGlut.) are set to 0.15 mS cm−2 and 0 mV,

respectively. At each spike of the cortex cell the synaptic variable is reset to 1, after

which it decays exponentially with time constant BCort.:

ds

dt
=−BCort.s. (3.6)

BCort. is set to 1 ms−1. The spikes for the cortical input are selected from a Poisson

distribution, with an enforced pause of 10 ms between spikes to avoid excessive

firing. We use cortical Poisson inputs with mean rates of 12, 25 and 45 Hz.

3.2.6 PPN output to basal ganglia

The two key functions of the PPN is to relay and to regulate the basal ganglia activity

[138]. In particular, the function of the PPN Type I cell can be seen as regulator of
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the basal ganglia [161]. These functions imply that the PPN and the basal ganglia are

highly interconnected. To investigate the regulation function of the PPN Type I under

normal, parkinsonian, parkinsonian with STN–DBS and/or PPN–DBS conditions,

we have also extended our model with PPN connections back to the basal ganglia.

The major projections from the PPN to the basal ganglia are the projections to the

STN and SNc [98]. The PPN projections to STN are distributed uniformly throughout

the STN [98] and are cholinergic, glutamatergic and GABAergic [138]. We choose for

a total of four glutamatergic projections by our PPN Type I cell; two to adjacent STN

cells, that connect to PPN, forming reciprocal connections, and two to adjacent STN

cells, which are not connected to PPN (Figure 3.1).

The synaptic current from PPN to STN cell j (IPPN→STN,j) is modeled as:

IPPN→STN,j = gPPN→STN(Vm,STN,j − EPPN→STN)sPPN, (3.7)

where sPPN is the synaptic variable of the PPN cell and Vm,STN,j the membrane po-

tential of STN cell j. The maximal synaptic conductance(gPPN→STN) and the reversal

potential EPPN→STN are set to 0.15 mS cm−2 and 0 mV, respectively. The dynamics of

the synaptic variable of the PPN cell is modeled with Equation 3.3 and use the same

kinetic parameters as we used for the STN cell, namely [Aα,Bα,θα,σα] = (5, 1, −9, 8)

We use the same parameters setting that we employed for the network without

feedback to switch between a normal and PD behavior.

3.2.7 Simulation

The PPN Type I model and the network model are implemented in MATLAB

(Mathworks, Inc., Natick, MA, USA). To simulate the firing properties of the isolated

PPN cell we use a stiff integrator (ODE15s in MATLAB) with maximum step size

0.1 ms and relative tolerance 10−6. We exclude effects of initial transients by ignor-

ing the first 400 millisecond of PPN cell simulations. The bifurcation analysis of the

PPN cell is done within MATCONT, a bifurcation analysis tool [50]. For the network

model without projections from PPN to STN the same numerical method is used

except for the relative tolerance, which is now set to 10−4 for the integration of the

STN–GPe–GPi network. For the simulation of the STN–GPe–GPi network we ignore

the first 6 seconds before we use it as input to the PPN cell. For the simulations with

PPN projections to the STN we used the fourth-order Adams Predictor-Corrector

method with fixed step size of 0.01 ms to integrate the STN–GPe–GPi–PPN network.

To speed up the calculation we have made a minor modification to the PPN model.

The voltage depending time constants for the (in)activations gating variables of the
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persistent sodium channels are bounded from below by 0.01 ms. This modification

does not effect the response of the PPN cell to depolarizing and hyperpolarizing

stimuli. For these simulations we ignore the first 2 seconds.

Spectral analysis is done with MATLAB using Neurospec and is based on Halliday

et al. [74] (http://www.neurospec.org). Autospectra of the PPN spike times are cal-

culated by dividing 10 second simulation data in 6 equal-length segments, provid-

ing a resolution of 0.6 Hz, and by averaging their Fourier transform. For additional

smoothing of the autospectra we use a Hanning filter. The spike times are obtained

from the voltage trace by a thresholding method (threshold is −20 mV).

To quantify the reliability and accuracy with which the PPN cell responds to the

excitatory cortical inputs (Equation 3.5) we use the relay index (RI): The ratio of

successfully relayed input and the total number of excitatory inputs. Specifically, for

each excitatory cortical input, we record a successfully relayed input if at least one

PPN spike occurs within a window of 5 ms after the input arrives. Thus a RI of zero

means no relay at all of the Poisson input, whereas a RI of one means a perfect relay.

Each RI is averaged over 10 trials of 10 second simulation. The cortical Poisson input

in each trial is different, but has the same mean rate.

3.3 Results

3.3.1 Firing properties of the isolated PPN neuron

The cell fires spontaneously at approximately 8 Hz (Figure 3.3). The cell responds

with high frequency spiking when a small depolarizing stimulus is given (Fig-

ure 3.3). When the PPN cell is hyperpolarized, a burst appears at the end of the

stimulus period or when a depolarizing stimulus is given during hyperpolariza-

tion (Figure 3.3).

3.3.2 Bifurcation analysis of the isolated PPN neuron

Figure 3.4 shows the bifurcation diagram of the PPN model with the applied cur-

rent (Iapp) as parameter. As the applied current increases the stable equilibrium

(rest state) becomes unstable via a subcritical Hopf bifurcation (H1), with unstable

limit cycles bifurcating. The equilibrium is unstable until the second Hopf bifurca-

tion (H2). This Hopf bifurcation is supercritical, which means that stable limit cycles

emerge. A stable limit cycle corresponds to continuous spiking.
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Continuation of the limit cycle starting from H2 shows a decrease in frequency

as the applied current decreases. The limit cycle becomes unstable via a limit point

bifurcation of limit cycles (Figure 3.5, LPC1). Continuing the limit cycle further it

regains stability through a period doubling bifurcation (Figure 3.5). The period then

is nearly constant around 100 ms. This low frequency spiking limit cycle corresponds

to the spontaneous firing of the PPN.
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Figure 3.5 Partial information about dynamical behavior: period of the spiking solutions as func-

tion of Iapp. LPC is a limit point bifurcation of limit cycles and PD is a period doubling bifurcation.

Both tonic spiking regimes have a type II phase response curve (Figure 3.6), mean-

ing that a perturbation of the limit cycle can produce a phase advance or phase delay

depending on the timing. The phase shift of both the low and high frequency spiking

solution becomes larger upon increasing, respectively decreasing, Iapp towards the

bifurcation points where they lose stability.
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3.3.3 PPN with basal ganglia input

Normal

Figure 3.7 shows the mean frequency of the PPN cell with normal input for different

choices for the strength of the synaptic conductances from STN and GPi to PPN.

The mean frequency is calculated from the reciprocal of the mean interspike interval

over a period of 10 seconds. This figure was almost equal to the average number

of spikes per second indicating that the response was not very bursty. We simulate

a STN lesion in our model by setting the STN conductance to zero and adjust the

GPi conductance to get a firing rate according to experiments of Breit et al. [31] (2.9–

6.6 Hz). Having the GPi conductance we then adjust the STN conductance to obtain

a firing rate of the PPN cell under normal conditions. Experiments in anesthetized

rat [185], and in monkeys [133] show that the majority of the PPN cells with a narrow

spike width have a irregular firing pattern and a discharge rate of 10–20 Hz during

spontaneous activity. It is proposed that the narrow spike width PPN cells are non-

cholinergic and probably correspond to Type I cells [202]. This procedure yields a

10 Hz irregular firing rate for the normal input when we set gGPi→PPN = 0.1 mS cm−2

and gSTN→PPN = 0.15 mS cm−2, see Figure 3.7. We will not change these settings

between the normal and PD states.

The top panel of Figure 3.8A shows the total synaptic input from STN and GPi

to the PPN cell during the normal state. In the normal state, the STN and GPi cells

fire irregularly and uncorrelated (Figure 3.2) leading to an irregular total synaptic
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Figure 3.7 Contour plot of the mean frequency of the PPN in the normal state for different choices

for gGPi→PPN and gSTN→PPN. See text for details about calculation of the mean frequency. The

marker ⋆ indicates the values for the chosen parameters.

input of the four STN and GPi cells projecting to PPN. The PPN cell fires with a

mean frequency of 10.3 Hz which is slightly faster than its spontaneous behavior

(Figure 3.8A, middle). In the autospectrum there is no clear peak above the confi-

dence level (Figure 3.8A, bottom). We conclude that the PPN cell fires in an irregular

manner in response to irregular (Normal) input.

PD

The STN cells fire in a bursty and clustered pattern in the PD state (Figure 3.2A).

One cluster projects to the PPN cell resulting in excitation from STN in this bursting

pattern around 3 Hz. The GPi cells behave similarly but fire less bursty (Figure 3.2B)

resulting in flatter level of inhibition, see top panel of Figure 3.8B. The inhibitory

input of GPi is relatively high compared to the excitatory input of STN, preventing

the PPN from firing. At the onset of the STN clustered input the excitation to PPN

becomes sufficiently high to overcome the inhibition of GPi, allowing the PPN to

fire. In response to this increased excitation of the STN the inhibitory input of GPi

increases, preventing the PPN cell to fire with the burst frequency of the STN input.

The PPN cell responds with subthreshold oscillations during the STN clustered in-

put. This regular input of STN and GPi resulting in a regular firing pattern of the

PPN cell with a mean frequency of 3.19 Hz (Figure 3.8B, middle). This regularity is
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Figure 3.8 Response of the PPN cell to inputs from the STN and GPi under normal (A), PD (B) and

PD with STN–DBS (C) conditions. Top: total synaptic input from GPi and STN received by the PPN

cell under the different conditions. The synaptic input of GPi is defined as the normalized sum of

the synaptic variables over the four GPi cells projecting to the PPN cell. Same definition holds for

the STN input. Middle: voltage trace of the PPN cell. Bottom: autospectrum of the PPN spike times;

see Section 3.2.7 for computational details.

also reflected in the autospectrum of the PPN output. Clear peaks occur at the mean

frequency and its superharmonics 6.4 Hz , 9.6 Hz , 12.8 Hz, etc. (Figure 3.8B, bottom).

PD with STN–DBS

Applying STN–DBS in the PD state, the bursting element in the STN input disap-

pears and the STN input becomes tonic (130 Hz, DBS frequency)(Figure 3.8C, top).

Also the GPi inhibition becomes more tonic. As a result the level of excitation to

PPN is higher and the mean firing rate increases to 36.4 Hz (Figure 3.8C, middle).

The autospectrum has a clear peak at the STN–DBS frequency and its subharmonics
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86.7 and 43.3 Hz, but no clear peak at the PPN mean frequency(Figure 3.8C, bot-

tom). Thus, STN–DBS makes the regular firing pattern of the PPN cell in PD more

irregular, and introduces components of its frequency in the PPN output.

3.3.4 Effect of PPN–DBS

Figure 3.9 shows the response of the PPN cell to PPN–DBS with amplitude of

100 µA cm−2 and frequencies of 10, 25 and 40 Hz. In the PD state and without STN

stimulation, the PPN cell is locked to its own stimulation frequency. This can be seen

from the peaks in the autospectra at the PPN–DBS frequency and its subharmon-

ics (Figure 3.9A). At the higher frequencies (25 and 40 Hz) this locking is perfect,

meaning the PPN cell fires with its own stimulation frequency. When STN–DBS is

applied in the PD state and the PPN cell is stimulated, the locking of the PPN cell

to its own stimulation frequency is less prominent, as seen in Figure 3.9B. STN–DBS

disturbs the total synchronization between the PPN cell and its own stimulation.

This effect of STN–DBS is less if the PPN–DBS frequency increases. This can be seen

from the peaks at the STN–DBS frequency and its subharmonics in the autospectra of

10 and 25 Hz PPN stimulation, whereas the autospectrum of 40 Hz PPN stimulation

has no clear peaks at the STN–DBS frequency.

Figure 3.10 shows again the effect of PPN–DBS, but now with a lower stimulation

amplitude of 10 µA cm−2. In both network states (PD and PD with STN–DBS) and

for all stimulation frequencies, the PPN–DBS is too weak to lock the PPN firing to the

stimulus frequency. The regular 3 Hz firing of the PPN cell in the PD state disappears

as the PPN–DBS frequency increases and becomes more irregular (peaks at 3 Hz and

superharmonics disappear). The effect of STN–DBS is compared to the weak PPN–

DBS strong and dominates the firing behavior of the PPN cell.

3.3.5 Relay function of the PPN cell

Table 3.1 shows the relay index (RI) of the PPN cell for the different situations and for

three mean rates of the Poisson trains. The RI in the normal state for the three differ-

ent forms of input is almost the same as in the PD state: except for the Poisson trains

with mean rate 45 Hz the normal state is slightly better than the PD state. Compared

to the normal and the PD state, STN–DBS improves the relay function of the PPN cell

for the Poisson trains with mean rates 25 and 45 Hz. The relay functionality during

high frequency STN–DBS is almost never higher with additional PPN–DBS. When

PPN–DBS is applied, a lower amplitude (10 µA cm−2) and higher frequency (40 Hz)
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Figure 3.9 Autospectrum of the PPN spike times with PPN–DBS applied. The PPN–DBS settings

are δDBS = 0.15 ms, fDBS = 10 − 25 − 40 Hz and iD = 100 µA cm−2. f. mean is the mean firing

frequency of the PPN cell

shows better results than a higher amplitude (100 µA cm−2) and lower frequencies

(10 and 25 Hz).

3.3.6 The closed loop network

Normal, PD and PD with STN–DBS

In section 3.3.3 we considered the output of the PPN receiving input of the basal

ganglia in three different states. In this section we consider again the three different

states of the basal ganglia, but now we include feedback of the PPN Type I cell to the

STN cells as described in section 3.2.6, to form the closed loop network.

Similarly as for the network without connections from the PPN to STN we exam-

ine how the mean frequency of the PPN cell with normal input changes as function

of the synaptic conductances gGPi→PPN and gSTN→PPN, see Figure 3.11. The result

closely resembles the result of the network without feedback of PPN to STN (Fig-
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Figure 3.10 Autospectrum of the PPN spike times with PPN–DBS applied. The PPN–DBS settings

are δDBS = 0.15 ms, fDBS = 10 − 25 − 40 Hz and iD = 10 µA cm−2. f. mean is the mean firing fre-

quency of the PPN cell

ure 3.7). We conclude that the feedback of PPN to STN has a minor effect on the

mean frequency of the PPN under normal input conditions. For the other simula-

tions we use gGPi→PPN = 0.1 mS cm−2 and gSTN→PPN = 0.15 mS cm−2.

The top panel of Figure 3.12 shows the total synaptic input from STN and GPi to

the PPN cell in the three different basal ganglia states. The total synaptic input in

all three states is very similar to the case when there is no feedback of PPN to STN.

We observe that the firing pattern of the basal ganglia cells in the normal and PD

state is not altered by our adding projections from the PPN to STN. Moreover, the

PPN cell responds to these synaptic inputs in a similar manner as without the PPN

to STN connections (Figure 3.12, middle and bottom). The PPN cell fires irregular in

the normal state with a mean frequency of 8.7 Hz. In the PD state, the firing pattern is

regular and the mean frequency is decreased to 3.39 Hz. STN–DBS makes the regular

firing pattern of the PPN cell in PD more irregular, and introduces components of its

frequency in the PPN output.
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Table 3.1 The Relay index (RI) of the PPN cell for the different situation in response to a corti-

cal Poisson input to the PPN cell with mean frequency of 12, 25 and 45 Hz and conductance of

0.15 mS cm−2. For STN–DBS the DBS settings are iD,STN = 400 µA cm−2, fDBS,STN = 130 Hz and

δDBS,STN = 0.15 ms and for PPN–DBS the pulse width is δDBS,PPN = 0.15 ms.

State Mean frequency of the cortical Poisson input

12 Hz 25 Hz 45 Hz

Normal 0.75 0.71 0.65

PD 0.75 0.71 0.64

PD with STN–DBS 0.70 0.74 0.76

iD,PPN = 100 iD,PPN = 10 iD,PPN = 100 iD,PPN = 10 iD,PPN = 100 iD,PPN = 10

PD:

PPN–DBS of 10 Hz 0.66 0.75 0.65 0.71 0.60 0.65

PPN–DBS of 25 Hz 0.57 0.75 0.59 0.72 0.57 0.66

PPN–DBS of 40 Hz 0.54 0.77 0.54 0.73 0.55 0.67

PD with STN–DBS:

PPN–DBS of 10 Hz 0.71 0.70 0.72 0.74 0.74 0.77

PPN–DBS of 25 Hz 0.67 0.69 0.72 0.73 0.71 0.77

PPN–DBS of 40 Hz 0.66 0.69 0.67 0.73 0.68 0.78
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Figure 3.11 Contour plot of the mean frequency of the PPN for different choices for gGPi→PPN and

gSTN→PPN. The PPN receives normal input and sends excitatory input to the STN cells. The synaptic

conductance from PPN to STN is constant and set to 0.15 mS cm−2.
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Figure 3.12 Response of the PPN cell to inputs from the STN and GPi under normal (A), PD (B)

and PD with STN–DBS (C) conditions. The PPN cell sends also projections back to the STN; see Sec-

tion 3.2.6. Top: total synaptic input from GPi and STN received by the PPN cell under the different

conditions. The synaptic input of GPi is defined as the normalized sum of the synaptic variables

over the four GPi cells projecting to the PPN cell. Same definition holds for the STN input. Middle:

voltage trace of the PPN cell. Bottom: autospectrum of the PPN spike times; see Section 3.2.7 for

computational details.

Effects of PPN and STN–DBS in the closed loop network

Figures 3.13 and 3.14 show the effect of PPN–DBS (no STN–DBS) with low and high

stimulation amplitude on STN and PPN activity,respectively. Initially, without ex-

ternal stimulation (until 1 s), the STN cells fire in a bursty and clustered pattern,

which characterize the PD state. The PPN cell fires regularly around 3 Hz. When

PPN–DBS is switched on, indicated by the arrow at 1 s, low amplitude (10 µA cm−2,

Figure 3.13) stimulation changes the firing pattern of the PPN cell from regular to ir-

regular while doubling its mean firing rate to 6 Hz. This low amplitude stimulation

of the PPN influences the activity of the STN clusters only episodically. In contrast,
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at high stimulation amplitude (100 µA cm−2, Figure 3.14), the PPN activity is im-

mediately overwritten by the stimulation, i.e. firing becomes locked to the stimulus.

In turn some of the STN cells start firing regularly at a rate around 20 Hz. For low

stimulus frequencies some clustering and bursting remains.

Next STN–DBS is turned on as well. We observe that the PPN activity becomes

similar as described in section 3.3.4 (Figures 3.9B and 3.10B) and STN cells are locked

to the STN–DBS.

STN–DBS does not interrupt the GPe bursty clustered firing patterns, also not

when combined with PPN–DBS (Figure 3.15A). PPN–DBS alone does disrupt this

pattern and eliminates this activity from the entire network (Figure 3.15B). The GPe

cells start firing regularly at a rate around 20 Hz, like the STN cells do (Figure 3.14).

Switching on STN–DBS reintroduces the clusters in GPe activity (not shown). Finally

we stress that in all simulations we see that effects of PPN–DBS in the GPe and STN

cells appears after several seconds.

3.4 Discussion

This Chapter investigates the response of a single PPN Type I cell to various inputs

of the basal ganglia representing physiological, pathological and therapeutic cases.

In particular, we look at the PPN spike output, that modulate the basal ganglia, and

the relay of excitatory inputs as these are the key functions of the PPN cells [138].

First, we have developed a computational model for a PPN Type I cell and tuned

it such that it reproduced known firing patterns [202]: Bursts after a period of hy-

perpolarization and spontaneous firing at 8 Hz (Figure 3.3). The model shows that

switching between low and high frequency spiking is possible. Bifurcation analysis

confirms this and reveals that there is a bistability between high and low frequency

tonic spiking (Figure 3.5). For increasing current our PPN model shows an increas-

ing frequency with a maximum of 450 Hz at Iapp = 50µA cm−2, where the periodic

orbit disappears through a Hopf bifurcation (Figure 3.5). For higher currents the

PPN cell is silent due to a depolarization blockade. Recently, Simon et al. [191] did

whole patch clamp recordings on rat brain stem slices and found that PPN cells have

a gamma frequency (40–60 Hz) plateau when they are depolarized with increasing

current steps. This behavior was not significantly different among the three PPN cell

types, except that PPN Type I cells fire faster than PPN Type II or PPN Type III cells

during the beginning of the current injection. Simon et al. [191] did not show hyper-

polarization steps. In addition they did not observe an abrupt switch between high

and low frequency spiking as the applied current increases. In the low frequency

range where we operate this discrepancy can be neglected.
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Figure 3.13 Response of the STN cells in PD to different PPN–DBS frequencies with low amplitude

(10 µA cm−2). For each PPN–DBS setting the spike trains of all eight STN cells and the PPN cell are

shown. The arrow above the PPN spike trains at 1 s indicates when PPN–DBS is switched on. The

pulse width for all settings is 0.15 ms
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Figure 3.14 Response of the STN cells in PD to different PPN–DBS frequencies with high amplitude

(100 µA cm−2). For each PPN–DBS setting the spike trains of all eight STN cells and the PPN cell

are shown. The arrow above the PPN spike trains at 1 s indicates when PPN–DBS is switched on.

The pulse width for all settings is 0.15 ms
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Figure 3.15 Effect of PPN–DBS and STN–DBS on the activity of GPe cells. PPN–DBS is applied

with high amplitude (100 µA cm−2) at 40 Hz and STN–DBS is applied at 130 Hz with amplitude

of 400 µA cm−2. For both stimulus a pulse width of 0.15 ms is used. Stimulation start at 1 s and

4 s indicated by the arrow. With STN–DBS clusters remain and longer in duration. Addition of

PPN–DBS shows no change (A). With only PPN–DBS (B) the GPe clusters are disrupted after some

transients

The PPN is an output structure to many brain structures and receives modulatory

input from the basal ganglia. We generated such basal ganglia input for three sce-

narios (Normal, PD and PD with STN–DBS) using an existing computational model

of the STN–GPe–GPi subnetwork [181]. The response of the PPN model depends on

the balance between the excitatory input from STN and inhibitory input from GPi,

see Figures 3.7 and 3.11. In general, the firing pattern of the PPN cell is more irregu-

lar for normal input, while the rate decreases and the pattern regularizes under PD

conditions.

Experimental results are not conclusive about the balance between excitatory and

inhibitory inputs to PPN and our simulations depend critically on this balance. On

the one hand, Nandi et al. [153] have shown that injection of a GABA antagonist

into the PPN of MPTP treated primates markedly attenuates akinesia. This result

suggests that in PD the neuronal activity of the PPN is suppressed by an excess of
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inhibition from GPi and SNr leading to the hypoactivity symptoms. On the other

hand, Breit et al. [31] shows that in anesthetized dopamine depleted rats PPN cells

fire more irregularly and in bursts with an increased firing rate as compared to con-

trols (18–20 Hz vs. 10–11 Hz). After lesion of the overactive STN in PD, the activity of

the PPN is diminished, suggesting that the PPN is under major control of the STN.

In our model STN–DBS can modulate the activity of the PPN cell via a direct

projection and via an indirect pathway via GPi. Florio et al. [58] found that in nor-

mal and dopamine depleted rats approximately 40% of the recorded PPN neurons

respond to STN–DBS, resulting from an unbalance between the excitatory and in-

hibitory pathways. Our simulations with and without PPN feedback to the STN

show an increased mean firing rate of the PPN if STN–DBS is applied. This sug-

gests that the PPN cell receives more direct than indirect STN–DBS input. As a result

the PPN cell locks to the STN–DBS input, but does not fire on every cycle. On the

contrary, Florio et al. [58] found that approximately 85% of the responding PPN neu-

rons responded to STN–DBS with inhibition, suggesting that the STN–DBS influence

via the indirect inhibitory inputs are stronger. Moreover, they found that the balance

between excitatory and inhibitory effects of the STN–DBS is independent from the

dopaminergic nigral neurons. The balance is disturbed in rats with entopeduncu-

lar (rodents equivalent of GPi) lesion. In that case 75% of the PPN neurons become

responsive to STN–DBS and are mostly (85%) excited by the STN–DBS.

A first report on PPN stimulation in human has shown that low frequency (20–

25 Hz) stimulation of the pedunculopontine nucleus have acute improvement in mo-

tor function, such as gait and postural stability [169]. For frequencies higher than

30 Hz, the improvement in motor scores was variable, while very high frequencies

(>180) worsened motor scores. Stefani et al. [196] studied at combined stimulation

of the PPN and STN. Their key finding was that PPN–DBS with medication was in-

ferior to medication only, while it improved motor scores in combination with med-

ication and STN–DBS as compared to medication and STN–DBS only. These results

were obtained after 6 months. Another clinical validation of PPN–DBS did not show

significant improvements in combination with or without medication and with or

without STN–DBS, after 1 year [57]. One may conclude that results of PPN–DBS

vary from case to case.

To investigate the effect of STN–DBS and/or PPN–DBS in the network without

projections from PPN to STN, we look at relay properties of the PPN cell (relay in-

dex). For the relay properties of the PPN cell it turns out that combined high fre-

quency stimulation of the STN and PPN stimulation at low frequencies (10 Hz, 25 Hz

and 40 Hz) is almost never better than exclusive STN stimulation. There are some

doubts about the validity of the relay index. In the first place the main function of

PPN Type I cells is to regulate the basal ganglia activity. No improvement in the relay
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capability does not imply that PPN–DBS will not improve the basal ganglia activity.

Second, the way we define the relay index. We record a successfully relayed excita-

tory cortical input if at least one PPN spike occurs in a specific time window after

the input. As the PPN cell has a spontaneous activity, the spike can be the result of

the cortical input or the result of its own spontaneous activity.

We also investigate the effect of STN–DBS and/or PPN–DBS on the patholog-

ical firing pattern of STN and GPe. For this purpose we extended our network

with feedback projection from PPN to STN. Our main finding is that high ampli-

tude (100 µA cm−2) PPN–DBS alone eliminates the pathological bursty clustered

firing pattern from the STN and GPe cells and replaces it with regular firing pat-

tern around 20 Hz. This 20 Hz is independent from the stimulus frequency, but for

the low frequencies (10 and 25 Hz) some clustering and bursting remain. In con-

trast STN–DBS and combined STN–DBS and PPN–DBS eliminate the pathological

firing pattern only from the STN cells and lock the STN activity to the STN–DBS. We

conclude that PPN–DBS alone is the best way to eliminate the clusters and thereby

the low frequency (3 Hz, associated with tremor) oscillations from the entire net-

work model. However PPN–DBS creates a 20 Hz oscillation in the STN and GPe

cells, which could also be pathological. Bradykinesia is associated with maintained

oscillations in the β band in the STN [112].

Capozzo et al. [41] have reported the effect of PPN–DBS on STN cells depend

on the frequency and intensity of the stimulus. PPN stimulus with low frequency

(10–40 Hz) and moderate intensity (50–400 µA) has an activated working on STN

neurons. Either a higher intensity or a higher frequency of the stimulus suppress

the STN firing. We have only looked at low frequencies (≤40 Hz) and moderate

intensities (10 and 100 µA cm−2). We observe also an activated working on STN

cells. Galati et al. [60] have shown in PD patient that PPN DBS at 25 Hz change the

mean firing of STN neurons. In particular, the firing rate of the bursting STN neurons

decrease and the firing rate of the irregular and regular STN neurons increase.

In many respects, our modeling approach is a first investigation how the PPN

could be integrated into a larger network. A first extension can be made by investi-

gating how various experimentally recorded LFP’s would generate input to the PPN.

Here a distinction must be made between medication on and off since axial signs are

unresponsive to medication in late stages of PD. For instance, Androulidakis et al.

[7, 8] found prominent 7–11 Hz oscillations in on medication states. Subsequently,

Weinberger et al. [224] found prominent beta oscillations in LFP in three PD patients

off medication. Neuronal firing did not show these oscillations, rather there pattern

was bursty or regular. More recently, Tsang et al. [213] showed beta synchronization

in pre-movement activity in the on medication state, but not in the off medication.
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It is important to note that these inconsistencies could be due to slightly different

recording areas.

Second, one could study the effect of the output of the PPN model on receiving

descending pathways and nuclei, e.g. to spinal motor neurons. For the connection to

motor neurons it would be interesting whether experimental results of Pierantozzi

et al. [166] can be reproduced with our model. They hypothesize that PPN–DBS

acts on spinal cord excitability improving the reticulospinal pathway. This could be

tested with the output of our model.

Further tuning of our PPN Type I model according to recent data of Simon et al.

[191] should be done. This requires more about the dynamics of the ionic currents,

than currently available. At present the dynamics is based on neurophysiological

data of the thalamocortical relay neuron (INa,L, IK,L, INa, IK, IT and Ihyp) and the pre-

Bötzinger neuron (INa,p).





CHAPTER 4

Functional neuronal activity and connectivity

within the subthalamic nucleus

Abstract In this Chapter we characterize the functional neuronal activity and

connectivity within the subthalamic nucleus (STN) in patients with Parkinson’s

disease (PD). For this purpose, single units were extracted from intra-operative

micro-electrode recording (MER) of 18 PD patients who underwent STN deep brain

stimulation (DBS) surgery. The firing rate and discharge pattern of simultaneously

recorded spike trains and their coherence were analyzed. To provide a precise func-

tional assignment of position to the observed activities, for each patient we mapped

its classified multichannel STN MERs to a generic atlas representation with a sen-

sorimotor part and a remaining part. Within the sensorimotor part we found sig-

nificantly higher mean firing rate (P < 0.05) and significantly more burst-like activ-

ity (P < 0.05) than within the remaining part. Coherence analysis of spike patterns

between simultaneously recorded neuron pairs have demonstrated that significant

coherent beta band activity (13–30 Hz) more often was present in the sensorimotor

part of the STN than elsewhere in the STN (P = 0.015). In other frequency bands,

there were no significant differences in coherence. We conclude that the sensorimo-

tor part of the STN distinguishes itself from the remaining STN with respect to beta

coherence, firing rate and burst-like activity. Interestingly, postoperative evaluation

of target stimulation areas in the investigated PD patients with DBS shows a signif-

icant preference for the sensorimotor part of the STN. Our firing behavior analysis

may help to discriminate the STN sensorimotor part for the placement of the DBS

electrode1.

1 Adapted from M. A. J. Lourens, H. G. E. Meijer, M. F. Contarino, P. van den Munckhof,

P. R. Schuurman, S. A. van Gils, and L. J. Bour. Functional neuronal activity and connectivity within

the subthalamic nucleus in Parkinson’s disease Clinical Neurophysiology, 2012.

71



72 4 Activity and connectivity within STN

4.1 Introduction

The striatal dopamine depletion, as observed in Parkinson’s disease (PD), alters neu-

ronal firing rates in basal ganglia nuclei, increasing firing rates in the striatum, the

globus pallidus pars interna and the subthalamic nucleus (STN) and a slightly de-

creased discharge in the globus pallidus pars externa [83]. On the other hand, the

type of discharge pattern, i.e., the interneuronal synchronization of basal ganglia

neurons, is thought to be as important as the rate of discharge in the execution of

smooth movements [19, 21, 28, 80]. In PD patients several alterations in the discharge

pattern and interneuronal synchronization have been observed in neurons of the

basal ganglia, including a tendency of neurons to discharge in bursts, an increased

synchronization of discharge rate between neighboring neurons, and rhythmic and

oscillatory behavior [32, 33, 62, 110, 120].

State of art models are inferring synchronously oscillating activity in one or sev-

eral nuclei of the basal ganglia as being strongly related to PD motor symptoms,

with the STN playing a pivotal role [80, 96]. Furthermore, it is recognized that

the STN is subdivided in functionally segregated areas, including the sensorimo-

tor, associative and limbic area [17, 75, 162]. It is also hypothesized that symptom-

specific topography within STN is determined by distinct neuronal oscillatory activ-

ity, with beta-frequency oscillations (13–30 Hz) correlating to bradykinesia and rigid-

ity [111, 113, 175, 223]. Theta-frequency oscillations in the basal ganglia (3–8 Hz) have

been associated with both Parkinsonian tremor and essential tremor [44, 120, 197].

Deep brain stimulation (DBS) is an established therapy to reduce PD motor symp-

toms, when medication does no longer produce satisfying results [16, 76]. The STN is

a commonly used target of DBS for PD. During the stereotactic surgery, to verify and

refine the position of the DBS target, often micro-electrode recording (MER) is per-

formed with up to five parallel tracks. Spiking activity and noise levels are visually

inspected and interpreted real-time during surgery, but the obtained MER signals

can also be analyzed more extensively and quantitatively off-line.

A way to obtain more knowledge about the functional anatomical network struc-

ture within the STN is to study the coherence between firing behavior of the STN

neurons. Coherence between neuronal firing patterns is a quantitative measure to

characterize neuron’s synchronous activity which is a consequence of neuronal in-

terconnections. In the current study we analyzed local coherence from the MER sig-

nal, i.e., the coherence between single units lying within the capture area of the

micro-electrode (distance <150 µm). Also the global coherence was analyzed, i.e.,

the coherence between units that are identified on different micro-electrodes (dis-

tance >2 mm).
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As a result of this analysis the spatial distribution of coherences within the STN

across different frequency bands was obtained and we were able to relate coherent

activity and connectivity in the different frequency bands to the sensorimotor part

and the limbic associative part of the STN. In addition, we investigated the firing

rate and discharge pattern of individual cells within the different areas of the STN.

If the obtained information about neuronal activity is distinct for the two STN re-

gions, it might be used to refine further the electrode implantation for DBS in the

sensorimotor part.

4.2 Methods

Data of STN spiking activity obtained during DBS surgery in PD patients as part of

the routine procedure was retrospectively retrieved. The position of each recording

in each patient was mapped onto a generic STN. We generated spike trains from

single units using spike sorting from the recorded activity. If a recording contained

activity of reliably identified multiple units, the firing rate and discharge pattern

of each unit were analyzed as well the interneuronal correlation of their activity.

The Medical Ethical Committee of the Academic Medical Center in Amsterdam was

officially consulted and denied the need for an approval for this study.

4.2.1 Patients

Micro-electrode recordings (MER) from PD patients who underwent stereotactic

surgery from January 2008 until April 2011 for implantation of stimulating electrode

in the STN were considered. In total MER data from 18 PD patients, with at least two

simultaneously recorded single units, were used. MERs of 11 patients were bilateral.

Demographic data and clinical information were retrospectively collected from the

patient files (Table 4.1). The presence of tremor was preoperatively evaluated by a

neurologist or Parkinson nurse specialized in movement disorders.

4.2.2 Surgical and micro-electrode recording procedure

The procedure for STN–DBS was a one-stage bilateral stereotactic approach, using

MER to delineate the borders of the STN. Frame-based three-dimensional MRI re-

constructions were used for STN targeting and trajectory planning. For this purpose
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Table 4.1 Clinical and demographic characteristics of the patients included in the study, at the time

of STN surgery. Also the number of micro-electrodes that are used for target localization, and the

number of extracted neurons per STN side are given.
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1 M, 69 13 16 L Yes 5 5 6

2 M, 59 9 35 R No 9 5 10

3 M, 64 15 25 L No 8 5 6

R No 7 5 7

4 M, 64 14 28 L Yes 11 5 4

5 M, 62 12 46 L Yes 14 5 15

R Yes 14 5 6

6 F, 57 18 47 L No 15 5 19

R Yes 15 5 2

7 M, 59 13 59 L No 21 5 6

8 M, 56 7 36 R Yes 15 3 4

9 M, 62 27 46 R No 17 5 6

L No 13 4 18

10 F, 51 6 38 L No 17 4 4

11 F, 58 12 59 L Yes 20 4 11

R Yes 19 3 10

12 M, 55 6 36 L No 12 5 13

R No 13 4 6

13 M, 64 8 30 R No 11 5 15

L No 8 3 9

14 M, 56 18 43 L Yes 26 4 8

R Yes 10 4 8

15 M, 68 32 49 L Yes 17 4 2

R Yes 14 4 8

16 M, 63 12 51 R Yes 17 3 9

L Yes 14 3 10

17 M, 47 13 35 L Yes 17 3 2

18 F, 68 18 77 L Yes 29 4 6

R Yes 21 4 18

Abbreviations: M, male; F, female; L, left; R, right; UPDRS-off, Unified Parkinson’s disease rating

scale off medication.
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the Leksell stereotactic frame and Leksell Surgiplan software (Elekta Instruments

AB, Stockholm, Sweden) were used. On T1 MRI scans the position of the anterior

commissure (AC) and posterior commissure (PC) were marked by the neurosurgeon

and standard STN coordinates were obtained 12 mm lateral, 2 mm posterior and

4 mm below the midcommissural point (MCP). Adjustments were then made ac-

cording to individual anatomy as visible on axial and coronal T2 MRI sequences,

providing the stereotactic cartesian (x,y,z) coordinates of the STN target point. The

trajectories of the micro-electrodes, that were attached to the frame and placed in a

microdrive, were expressed in the stereotactic space by the arc and ring angle relative

to the frame and by the STN target point. The microdrive depth zero of the central

electrode corresponded to the MRI based STN target point. The paths were defined

using the following criteria: anterior angulation to intercommissural line of 15–20°,

lateral angulation from midline 20–30°, entry on top of a gyrus and avoiding sulci,

cortical surface veins, and lateral ventricles. Under local anesthesia a 12 mm diame-

ter burr-hole in the skull was made centered on the stereotactically identified entry

point. All patients were awake during the entire recording session and without any

sedatives. Surgery was performed following overnight withdrawal of anti-Parkinson

medication.

Extracellular single/multi-unit micro-recordings were performed from small poly-

amide-coated tungsten micro-electrodes (FHC micro-electrode 291; impedance 1.1±

0.4 MΩ measured at 220 Hz, at the beginning of each recording session) with 20 µm

exposure, mounted on a sliding cannula. Three to five steel cannulas and micro-

electrodes (Table 4.1) were used and were placed in a so-called Ben’s gun, with a

central cannula directed to the planned STN coordinates and four parallel cannulas

equally spaced around the central position with a center-to-center distance of 2.0 mm

(anterior, posterior, lateral and medial cannulas). Starting 6–8 mm above the MRI-

calculated STN target, the micro-electrodes were advanced simultaneously in 0.5-

mm-steps by a manual microdrive. Advancing was stopped when electrical activity

typical of substantia nigra cells was recognizable in at least one of the electrodes or

when a significant decrease of electrical activity was present in all recordings. Clin-

ical testing was performed at several sites by an experienced movement disorders

neurologist. The permanent quadripolar DBS electrode (Model 3389) was implanted

at the site with the best therapeutic window, i.e., best effect on motor symptoms and

higher threshold for side-effects. The final position of all DBS electrodes was verified

by co-registration of post-operative CT with pre-operative MRI [43].

Signals were recorded with the amplifiers (10,000 times amplification) of the

Leadpoint system (Medtronic, Minneapolis, MN), and were analog bandpass filtered

between 500 and 5000 Hz (−3 dB; 12 dB/oct). Data were digitized and stored for off-

line analysis using both the Leadpoint system and a CED 1401 interface controlled by
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Spike2 (Cambridge Electronic Design, Cambridge, UK). The Leadpoint system sam-

pled its analog output signal at 12 kHz using a 16-bit A/D converter and afterward

up-sampled it internally to 24 kHz. On each insertion depth of the electrodes, multi-

unit segments were stored with Leadpoint for 10–20 s together with depth infor-

mation, while the whole MER session was stored with Spike2. To obtain the Spike2

data the digital output of Leadpoint system was fed into a 16-bit D/A converter, and

its output was filtered with a 3 kHz low-pass filter (−3 dB; 6 dB/oct). The signal

was digitized again with a sampling rate of 20 kHz, using the CED 1401 interface.

To annotate the Spike2 data with depth information we matched it with the 10–20 s

Leadpoint recordings. All further processing and data analysis were performed off-

line using MATLAB (Mathworks, Inc., Natick, MA, USA) and the annotated Spike2

data. Before we used the raw Spike2 data for spike train extraction it was filtered

between 300 and 5000 Hz using a 2nd order non-causal Butterworth filter.

4.2.3 Fitting an atlas STN to MER

We determined for each STN recording the specific location inside the STN. For this

we mapped the spatial stereotactic coordinates of the MER onto a generic atlas rep-

resentation of the STN available within the software package Cicerone [140]. Details

of the creation of this STN atlas, in the form of a three-dimensional polygon sur-

face, can be found in Butson et al. [35]. The Leksell stereotactic coordinate system

is a right-handed coordinate system, the positive x-axis being orientated to the left,

the positive y-axis pointing anterior and the positive z-axis pointing downwards, the

origin of the stereotactic coordinate system thus being in the superior posterior cor-

ner on the right side. We converted the coordinates such that the origin was at mid-

point of the AC–PC line (MCP) and y orientation was retained, whereas the x and

z orientation were reversed (Figure 4.1). This was done to get the same origin and

orientation as the AC–PC coordinate system of the generic atlas used. Depending on

how well the neurosurgeon aligns the stereotactic y-axis with the AC–PC line, there

may be a small angle between the axes of the two coordinate systems. The location

of each MER site could then be defined as a specific point in the AP–PC coordinate

system (Figure 4.1).

During surgery the entrance and exit of STN were discerned visually by the neu-

rophysiologist as an increase and decrease, respectively, in the background noise

amplitude and neuronal firing [18, 29, 39]. In this way, each MER point was classi-

fied to be inside or outside the STN. We adopted the method of Luján et al. [125] to

fit the MER points to the atlas representation of the STN. The method of Luján et al.

[125] fits MER points that are identified to lie in either the STN or the thalamus to
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Figure 4.1 Schematic representation of the used coordinate systems. Left: Leksell stereotactic frame

is used to define coordinates inside the brain. Attached to the frame is a semi-circular arc with a

movable micro-electrode carrier. The arc is positioned in x, y, z direction, indicated by the dashed ar-

rows on the right, in such a manner that its center corresponds with a planned target. The electrodes

are always directed towards the target regardless of the position of the carrier on the arc (arc angle)

or angling of the arc relative to the xy-plane (ring angle). Right: transformed stereotactic coordinate

system with midcommissural point (MCP) as the origin. The trajectories of the micro-electrodes of

a patient through the planned target (red point) with respect to the transformed coordinate system

are shown. The anterior commissure (AC) and posterior commissure (PC) points, and the AC–PC

line of the patient are shown as well. The points AC’ and PC’ are the projections of AC and PC on

the xy-plane.

their corresponding atlas representations by minimizing a cost function, which de-

pends on a set of bounded linear transformations. In contrast with Luján et al. [125],

we used all MER points to fit those inside the STN to the atlas STN: the number of

‘inside STN classified MER points’ (blue locations, Figure 4.2) was maximized to lie

inside the atlas STN and the inclusion of ‘outside STN classified MER points’ (red

locations, Figure 4.2) were minimized to lie inside the STN.

The cost function for finding the optimal location of the atlas STN with respect to

the MER points depended only on the Euclidean distances between the MER points

and the surface of the atlas STN:

f (u) = ∑
j

wj Ij‖xMER,j − xSTN center,j(u)‖
2, (4.1)

where xMER,j and xSTN center,j are the x,y,z coordinates of the MER point j and its

nearest polygon’s centroid on the STN surface in the AP–PC coordinate system, re-

spectively. The set of linear transformations of the atlas STN is defined by u, which
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Figure 4.2 3D view of a single patient’s left side atlas STN (green volume) fitting to the MER points

(blue and red dots). The blue dots are ‘inside STN classified MER points’. Initially, the center of

the atlas STN is placed on the planned target point and oriented to the y-axis of the stereotactic

coordinates system. From there the STN is translated, scaled and rotated to find the best fit.

allowed a maximum translation and rotation of 10 mm and 10°, respectively, in each

direction, and a maximum scaling of ±20% along each axis. The boolean operator I

was set to 1 if an ‘inside STN classified MER point’ was outside the atlas STN or an

‘outside STN classified MER point’ was inside the atlas STN. For ‘inside STN classi-

fied MER points’ we used a weight of w = 20, whereas for the remaining MER points

we used a weight of w = 5.

To minimize the cost function we used the optimization toolbox within MATLAB.

For each patient 50 realizations of the transformation vector were obtained using the

global optimization algorithm simulated annealing (function simulannealbnd, default

setting except for function tolerance of 10−4, fast temperature update and StallIter-

Limit of 6000). Each realization was used as starting point of a local optimization

solver to refine the realization (function fmincon, default setting except for a maxi-

mum of 1000 iterations and 3500 function evaluations, constraint tolerance of 10−1,
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parameter tolerance of 10−2, function tolerance of 10−4 and centered finite differ-

ences to estimate the gradients). The global optimization solver was initialized by

placing the center of the atlas STN, defined in AC–PC coordinates, on the preoper-

ative MRI defined target position. Furthermore, the atlas STN was rotated such that

the AC–PC line was aligned with the y-axis of the stereotactic coordinates system.

For each patient the realization with the minimal cost function was taken as optimal

solution. In the case of more than one optimal solution, the realization with minimal

cost function and minimal transformation of the atlas STN was used.

Based on its afferent and efferent connections, the STN is subdivided into three

functional different territories: the sensorimotor part, the associative part and the

limbic part. The medial third of the anterior two-thirds of the STN contains the limbic

and a portion of the associative territories. The ventral aspect of the antero-lateral

two-thirds of the STN composes the other portion of the associative territory. The

dorsal aspect of the antero-lateral two-thirds and the posterior third of the STN are

related to sensorimotor circuits [17, 75, 162]. We have divided the atlas STN into

two regions: a part that consists mainly of the sensorimotor part described above

and a remaining part that consists mainly of the associative part described above

(Figure 4.3).

4.2.4 Location of active DBS electrode contact

After surgery, all contact points were tested in each patient to verify the therapeu-

tic window: by stimulating at 60 µs and 130 Hz, the range of voltage between the

threshold for effect on motor symptoms as defined by UPDRS III and the thresh-

old for side-effects was evaluated. This procedure was performed by the Parkinson

nurse specialized in DBS, blinded to the intra-operative data and micro-electrode

recordings. The contact point with the best therapeutic window (lower threshold

for benefit/best effect and higher threshold for side effects) was chosen for chronic

stimulation. Patients came back to the outpatient clinic regularly after a period of

about 6 weeks to verify the effect of chronic stimulation. At this point stimulation

was increased or contact point changed if needed. For the present study, we col-

lected clinical data from patient files and extracted the contact point that was used

for chronic stimulation at least 6 months after surgery, that is when clinical condi-

tions were considered stable.

The stereotactic microdrive depth of the center of the clinically most effective elec-

trode contact was calculated as follows:
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Figure 4.3 Based on afferent and efferent connections the STN was subdivided into a dorsal senso-

rimotor part and a ventral associative (remaining) part. Top: shows three coronal slices of the atlas

STN. In each slice the blue line indicates the border between the dorsal and ventral part. Bottom:

three-dimensional representation of the atlas STN subdivision. The blue plane indicates the bor-

der between dorsal and ventral part and the three red contours indicate the location of the above

coronal slices.

Dactive contact = Dcontact zero − 1.5Icontact − 0.75, (4.2)

where Dcontact zero is the implanted depth of the bottom of contact zero (also retro-

spectively collected from the patient files), 1.5 is the center-to-center distance in mil-

limeter of two adjacent contacts, Icontact is the contact number chosen for chronic DBS

(Icontact = 0, 1, 2 or 3) and 0.75 is half of the contact length in millimeter. The AP–PC
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coordinates of the active contact could then be defined by matching its depth with

the MER trajectory where the DBS electrode was implanted.

4.2.5 Data preparation

Selection of stable MER

Only stable MER fragments that were recorded inside the STN for at least 10 s du-

ration were used for analysis. To test the stability of the MER fragment we adopted

the approach of Moran et al. [144]. Each fragment was divided into consecutive 1-s

segments, which were split into 20 pieces of 50 ms. For each 50 ms piece, the root

mean square (RMS) was calculated, yielding 20 RMS values for each 1-s segment.

MER fragments were considered unstable if they failed to pass the Bartlett’s test for

equal variances of the RMS across all one second segments with P < 0.0001. Only the

longest stable part of the MER fragment was further analyzed.

Spike sorting: spike detection, feature extraction and clustering

A typical MER fragment consisting of action potentials (spikes), background noise

is shown in Figure 4.4. The spikes are generated by neurons located approximately

within 150 µm from the electrode tip [36, 142]. Normally, on one needle, spikes may

be recorded from 1 up to maximally 5 neurons. The background noise consists of

neuronal activity from neurons lying further away from the electrode tip, and instru-

ment and electrode noise. To obtain the neural activity of individual nearby neurons,

the spikes have to be extracted from stable MER fragments. Moreover, each detected

spike has to be assigned, with a high degree of reliability, to putative neurons.

Spikes of probably 2 neurons
1 1 1 11

2 2Background noise
10ms

0.5s10
V

m
10

V
m

10ms10
V

m

Figure 4.4 Example of a stable micro-electrode recording fragment that shows action potentials and

background noise in the insets.
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For detailed method for spike sorting see Appendix C. In short, local maxima of

the MER signal that exceed 4.5 times the noise-level, which was estimated with the

‘envelope’ method [51], were flagged as a spike event. Subsequently, the waveform

of each detected spike was obtained from the MER by extracting a data window

of 1.2 ms around the time of the spike event. To remove waveforms that consider-

ably overlap (overlapping spikes), spike events that occurred within 1 ms from each

other were ignored (Figure 4.5A). A wavelet based method [89, 118, 174] was used to

extract the six most discriminative wavelet coefficients of the spike waveform (Fig-

ure 4.5B). The six extracted wavelet coefficients were used as feature for the cluster-

ing step. For the clustering, a classification expectation maximization algorithm [42]

was used, as implemented in KlustaKwik version 1.7 [81]. Finally, the sorted spike

waveforms were transformed to spike trains that contained only the points in time

when neurons fired (Figure 4.5C).

Evaluating the quality of the spike sorting

To address the question whether the sorted clusters of waveforms truly represented

single neurons, a series of tests was performed. Failures in the identification of spikes

(false negative) or assignment of a spike or noise event to a wrong cluster (false pos-

itive) are typical examples of sorting errors and may occur at each stage of the spike

sorting algorithm. The overlap between pairs of clusters of sorted spike waveforms

leads to both false negative and false positive errors. Cluster isolation was assessed

using a projection method based on the Fisher’s linear discriminant [84]. For any

pair of clusters found on a single electrode, a Fisher’s linear discriminant axis can be

calculated from the mean and the covariance matrix of the two clusters [84]. Project-

ing every spike waveform of the two clusters onto the Fisher’s linear discriminant

between them resulted in two distributions of a single one-dimensional quantity (F1

and F2). The overlap between the histograms of F1 and F2 with bin width h and N

bins was calculated according to:

FLDoverlap =
∑

N
i 1(F1,iF2,i)min(F1,i, F2,i)hi

min(∑N
i F1,ihi,∑

N
i F2,ihi)

with

1(x) =







0, x = 0

1, otherwise.

(4.3)

We considered a cluster to be well-isolated if the overlap with all other clusters

recorded simultaneously on the same electrode satisfied FLDoverlap ≤ 0.05.
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Figure 4.5 Illustration of the spike sorting algorithm on a stable 18-s long MER fragment of the left

STN of patient 6: (A) Maxima with values above the threshold are detected as spikes. Left: first 8 s

of the MER fragment. Red dashed line is the threshold, which is 4.5 times the noise-level, calculated

according to Dolan et al. [51]. Middle: spike waveforms, extracted from the 18-s long MER frag-

ment and aligned to their peak at time zero. Right: spike waveforms after removal of artefacts and

overlapping spikes, and realignment of the peak. (B) A set of wavelet coefficients representing the

relevant features of the spike waveforms is selected using the Kolmogorov–Smirnov test (KS test)

for normality. Left: each curve represents the wavelet coefficients, calculated with a fourth-level

discrete Haar wavelet transform, for a given spike waveform. Middle: schematic representation of

possible distributions of a wavelet coefficient. Coefficients with a multi-modal distribution are can-

didate to use for spike waveform classification. Right: distribution of the four wavelet coefficients

with the highest deviation from normality. (C) Selected wavelet coefficients serve as the input for

the classification expectation maximization algorithm (KlustaKwik) [81]. Top: clustering algorithm

identified the activity of two neurons with different spike waveform and separate cluster in the pro-

jection of the three wavelet coefficients with highest deviation from normality. Bottom: the sorted

spike waveforms are transformed to spike trains.
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A well-isolated cluster may still contain spikes from two neurons with very simi-

lar extracellular spike waveform. The multi-unit contamination was graded by eval-

uating the refractory period violation [54]. Finally, only clusters that were well-

isolated and with a fraction of interspike intervals (ISIs) within the refractory period

of 1.5 ms out of the total ISIs less than 2.5% were included.

We also neglected the MER fragment if the total number of overlapping spikes,

i.e., if a spike occurs within 1 ms from another spike, was larger than 10% of the total

detected spikes. The peak amplitude distribution of a cluster of spikes was fitted

with a Gaussian distribution to estimate the number of spikes with peak amplitude

below the detection threshold [84]. A cluster (neuron) was classified correctly if ≤

10% of the spikes were subthreshold, otherwise it was classified as environmental.

In case a neuron was classified as correctly and not as environmental, an isolation

score was calculated, which indicates how far the noise and the spike cluster are

separated [101]. This isolation score takes values in the interval [0, 1], where a score of

1 indicates perfect isolation. Thus, only correctly classified neurons with an isolation

score ≥ 0.75 were included in the analysis.

Finally, we included only those neurons (correct or environmental) which had

a roughly stable discharge rate over the recording period and a firing rate exceed-

ing 10 spikes per second. Due to the limited recording duration, the stability of the

discharge rate of the spike train was evaluated by visual inspection rather than sta-

tistical tests [67].

4.2.6 Spike train analysis

Firing rate and discharge pattern

For each identified neuron the mean firing rate over the recording period was cal-

culated. The type of firing pattern of each identified neuron, i.e., regular, irregular

and bursting was assessed as follows. Its discharge density histogram was estimated

[104] and compared to three reference probability density functions (PDF) as pro-

posed by Labarre et al. [116]. For the reference functions (1) a Gaussian PDF with

mean 1 and variance 0.7, (2) a Poisson PDF with mean 1 and (3) a Poisson PDF with

mean 0.8 were used to represent regular, irregular and bursting activity, respectively.

The smallest distance of the estimated discharge density histogram of the neuron to

the three reference PDFs determined the type of neuron.

Additional information about the firing pattern of a spike train was obtained by

the coefficient of variation (CV) and the asymmetry index (AI) of its ISI (interspike

interval) distribution. The CV is a measure for the variability of a spike train, defined
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as the ratio of the standard deviation to the mean ISI. For a Poisson spike train (ir-

regular) the CV equals 1 and for a perfect regular spike train the CV equals 0. The AI

is defined as the ratio of the mode to the mean ISI. For a bell-shaped ISI-distribution

the AI is close to one, while for a positively skewed ISI-distribution it is less than

one.

Coherence analysis

To quantify the synchronization between two spike trains we used the notion of co-

herence (Cxy(λ)). The magnitude squared coherence provides a bounded measure of

linear correlation between 2 stationary random processes x(t) and y(t) at frequency

λ on a scale from 0 (no correlation) to 1 (perfect correlation):

|Cxy(λ)|
2 =

|Sxy(λ)|2

Sxx(λ)Syy(λ)
, (4.4)

where Sxx and Syy are the power spectral density of x(t) and y(t), respectively, and

Sxy is the cross spectral density between x(t) and y(t).

We used the spectral estimation technique as described in Halliday et al. [74] and

implemented in Neurospec (http://www.neurospec.org) to obtain these quantities

for the spike trains. This spectral estimation technique is based on averaging of the

modulus squared Fourier transform (periodogram) of disjoint segments of the spike

train. Spike trains were divided into non-overlapping disjoint segments of 214 sam-

ples and the mean value of each segment was subtracted. The finite Fourier trans-

form of each disjoint segment was calculated without using a tapering window, pro-

viding a frequency resolution of 1.22 Hz. For additional smoothing of the spectra we

used a Hanning filter.

The statistical significance of the coherence was assessed by estimating the distri-

bution of the magnitude squared coherence under the null hypothesis of |Cxy(λ)|2 =

0 (independent spike trains) and establishing a 99% confidence level from this dis-

tribution. To estimate the distribution, independent pairs of spike train 1 and 2 were

created by randomly shuffling the ISIs of spike train 1. In the case both spike trains

were recorded by the same micro-electrode, the ISIs of both spike trains were shuf-

fled under the constraint that the union of the resulting shuffled spike trains had ISIs

larger than 1 ms. This was done to mimic the dead time in the spike sorting. The

magnitude squared coherence was computed for 1000 surrogate data pairs, and the

99th percentile of the coherence distribution was used as the 99% confidence level to

determine significant coherence at each frequency.
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The coherence spectrum was split up into five frequency bands: theta (3–8 Hz),

alpha (8–13 Hz), beta (13–30 Hz), lower gamma (30–60 Hz) and upper gamma (60–

100 Hz). Coherence between two spike trains at a given frequency band was judged

as significant if at least one peak value of the magnitude squared coherence at that

frequency band exceed the 99% confidence level.

4.2.7 Statistical analyses

Statistical analysis was performed using statistical software PASW Statistics 18 (SPSS

Inc., Chicago, IL, USA). The mean firing rate and the ISI-distribution parameters

(CV and AI) were not normally distributed for the two neuron groups formed by

the STN region (sensorimotor or remaining) as assessed by the Shapiro–Wilk test.

Therefore, comparison of these continuous variables between the two neuron groups

was computed using the Mann–Whitney U-test. Electrophysiological differences in

firing pattern between two neuron groups were evaluated by a Chi-square test. In

the case the Chi-square test was significant, i.e., proportions of the firing pattern

were not equal across the two STN region, we used Goodman post hoc comparative

tests to determine which firing patterns were significantly different. This approach

calculates for each contrast a Z-statistic and compares it to a critical value. We used

the Scheffé critical value, which is found by taking the square root of the critical

value in the original omnibus Chi-square test (S∗ =
√

χ2
ν:1−α =

√

χ2
2:1−0.05 = ±2.45,

ν is degree of freedom and α is significant level). A contrast was considered to be

significant as |Z| > |S∗|. The same approach was used to analyze the difference in

firing pattern between tremor and no-tremor patients.

To analyze the difference in coherence between the sensorimotor part and remain-

ing part of the STN, each calculated coherence was assigned to one of the two STN

regions. If the recording sites of both spike trains were located in the same STN

region the coherence was assigned to that region, otherwise the coherence was as-

signed to the STN region where the average position of both recording sites was lo-

cated. The number of neuron pairs that exhibit a significant synchronization of their

activity within a given frequency band as well as for the entire bandwidth from 3 to

100 Hz was determined for each STN region. The Fisher’s exact test was then used

to compare these numbers between the two STN regions. The same approach was

used to analyze the difference in coherence between tremor and no-tremor patients

and between local and global coherence.

A paired Student’s t-test was used to compare mean values of the fitting. A prob-

ability level of P < 0.05 was considered to be statistically significant. All data are

presented as means ± standard deviation.
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4.3 Results

4.3.1 Fitting an atlas STN to MER

For each of the 29 STNs, the set of classified MER points was fitted to a generic

atlas representation of the STN (Table 4.1). To evaluate whether the optimization

method or the AC–PC line aligning method (Section 4.2.3) was better, we compared

the percentage of correctly fitted MER points and the summed Euclidean distance

of incorrectly fitted MER points to the atlas STN surface (fitting error). Figure 4.6

shows the distributions of the percentage of correctly fitted MER points and fitting

error of all STNs for both methods. The optimization fitting method resulted in an

atlas STN transformation that correctly fitted an average of 93.6 ± 4.7% of the clas-

sified MER points, while the AC–PC line aligning method only fitted 65.8 ± 14.9%.

The percentage of correctly fitted MER points was significantly improved by the op-

timization fitting method (paired t-test, P < 0.000000005). Also the fitting error was

significantly smaller for the optimization fitting method than for the AC–PC line

aligning method (paired t-test, P < 0.00000005; 1.4 ± 1.3 mm and 23.4 ± 15.8 mm,

respectively).

Application of the optimization fitting method resulted in only five neurons fitted

outside the STN of a total of 248 neurons localized with MER inside the STN. Eval-

uation of the final position of the active contact in the patients 1 year after surgery

showed that in 21 cases they were located in our defined sensorimotor ‘atlas STN’,

and in four cases within the remaining STN. In one case there was no DBS electrode

implanted and in three cases the active contacts were located slightly above the dor-

sal border of the STN.

4.3.2 Spike train extraction

For spike train extraction 130 different sites within the STN were used. From the 130

sites 93 were located within the sensorimotor part of the STN and 37 were located

within the remaining part of the STN. Per site 1–3 neurons, that satisfied our quality

criteria, were extracted (see Section 4.2.5). This resulted in a total of 177 neurons

(105 classified as correct and 72 as environmental) within the sensorimotor STN and

71 neurons (37 classified as correct and 34 as environmental) within the remaining

STN. Mean duration of a spike recording in the sensorimotor and remaining part

was 12.2 s and 13.2 s, respectively. Figure 4.7 illustrates the spike analysis that is

performed for all simultaneously recorded neurons.
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Figure 4.6 The fit performance of the optimization method is compared with its starting point (AC–

PC line aligning). A box plot comparison of the percentage of correctly fitted MER points by the

atlas STN (A) and fitting error (B). The lower line of each box indicates the 25th percentile (Q1),

the upper line indicates the 75th percentile (Q3), and the horizontal lines above and below the

boxes (whiskers) represent the data range. The bold line inside the box indicates the median, while

the dot indicates the mean.

4.3.3 Firing rate and discharge pattern

Neurons within the sensorimotor part of the STN fired on average at a significantly

higher rate than those within the remaining part of the STN (Mann–Whitney U-

test, P < 0.05; 29.8 ± 13.2 Hz and 26.7 ± 12.9 Hz, respectively). The distributions of

firing rates for neurons within the sensorimotor and remaining part are shown in

Figure 4.8A, and mean values are summarized in Table 4.2.

Both STNs region displayed neurons with a regular, an irregular and a bursty fir-

ing pattern as determined by the method of Labarre et al. [116] (Figure 4.8D and Ta-

ble 4.2). The most frequently observed neuronal firing pattern of both STN regions

was irregular followed by bursty and then regular. Comparison of proportions of

neurons in the three firing patterns demonstrated a statistically significant difference

between the sensorimotor and remaining part of the STN (χ2(2) = 10.7, P < 0.005).

Goodman post hoc tests revealed that bursty neurons were significantly more ob-

served in the sensorimotor part than in the remaining part of the STN (Z = 3.40,S∗ =

±2.45, P < 0.05). No significant differences were found with respect to the other two

firing patterns (irregular: Z = −1.84; regular: Z = −1.63).

In addition, comparisons of AI and CV of the ISI-distributions for the extracted

spike trains between the two STN parts demonstrated a significantly lower mean of
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Figure 4.7 Spike analysis of two simultaneously recorded neurons of patient 1. (A) Part of a raw

MER of 10 s duration with the two extracted neurons displayed in black and green. (B) Interspike

interval (ISI) distribution of both neurons with a CV > 1 and small AI. This means they have a high

variable discharge rate and positively skewed ISI-distribution. For each neuron the ISI-distribution

was constructed with a resolution of 1 ms and a maximal time interval of 500 ms. (C) Histograms of

the discharge density of both neurons. The histograms are constructed by dividing a spike train into

consecutive interval of length t, the mean ISI (µ), and count the number of spike in each interval.

The three curves on the histograms represent the reference functions: dashed curve for Gaussian

PDF (regular firing: mean 1 and variance 0.7), solid curve for Poisson PDF (irregular firing: mean

1) and dotted curve for Poisson PDF (bursty firing: mean 0.8). The density histograms of neuron

1 fit well with the dotted curve (bursty) and neuron 2 with the solid curve (irregular). (D) Power

spectral density (PSD). Shaded area indicates 95% confidence interval of the absence of oscillatory

activity and the horizontal line inside the shaded area indicates the asymptotic value of the spec-

trum. Neuron 1 shows a significant peak at 2.5 Hz. (E) Coherence function between the two neurons

with the dotted line as the 99% confident level and the dashes vertical lines indicating the borders

of frequency bands. There is a large significant peak in the beta band, and also a significant peak in

the high gamma-band.
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AI and higher mean of CV (Mann–Whitney U-test, P < 0.001; Table 4.2, Figure 4.8B

and C) for the sensorimotor part, which is in line with the finding that STN spike

activity in this part is more bursty.

Neurons extracted from tremor (n = 129) and non-tremor patients (n = 119) had

a comparable distribution of the firing pattern (χ2(2) = 1.07, P = 0.59, see Table 4.3).

Table 4.2 Electrophysiological characteristics of the spike trains within the sensorimotor and re-

maining part of the STN.

STN region Firing pattern n (%) mean firing rate (Hz) CV of the ISI AI of the ISI

Sensorimotor Regular 10 (5.6) 43.3 ± 25.1 0.72 ± 0.09 0.57 ± 0.19

Irregular 106 (59.9) 32.1 ± 11.3 1.07 ± 0.17 0.28 ± 0.12

Bursty 61 (34.5) 23.7 ± 10.6 1.41 ± 0.26 0.20 ± 0.10

Total 177 (100) 29.8 ± 13.2∗ 1.17 ± 0.28∗∗ 0.27 ± 0.14∗∗

Remaining Regular 9 (12.7) 28.5 ± 13.5 0.79 ± 0.16 0.57 ± 0.27

Irregular 51 (71.8) 26.5 ± 13.7 0.99 ± 0.16 0.39 ± 0.18

Bursty 11 (15.5) 25.7 ± 8.2 1.40 ± 0.18 0.22 ± 0.07

Total 71 (100) 26.7 ± 12.9 1.03 ± 0.23 0.38 ± 0.20

Values for firing rate, CV and AI are means ± standard deviation. Percentage values for the firing

pattern in parentheses. Asterisks denote significant differences between the neurons in the sensori-

motor and remaining part of the STN (Mann–Whitney U-test; ∗P < 0.05 and ∗∗P < 0.001). Note that

statistics analysis is only performed on values of the total neurons in each STN region. Abbreviations:

CV, coefficient of variation; AI, asymmetry index; ISI, interspike interval; STN, subthalamic nucleus.

Table 4.3 Distribution of the three firing patterns for neurons extracted from

tremor and non-tremor patients.

Tremor Firing pattern n (%)

Yes Regular 12 (9.3)

Irregular 81 (62.8)

Bursty 36 (27.9)

No Regular 7 (5.9)

Irregular 76 (63.9)

Bursty 36 (30.3)

Percentage values are given in parentheses.
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Figure 4.8 Statistical comparison of the firing rate (A), the ISI-distribution parameters CV (B) and

AI (C) and distribution of the types of firing patterns (D) between the neurons in the sensorimotor

and remaining part of the STN. The lower line of each box in A, B and C indicates the 25th per-

centile (Q1), the upper line indicates the 75th percentile (Q3), and the horizontal lines above and

below the boxes (whiskers) represent the data range. The data range is defined as 1.5 ∗ (Q3 − Q1)

above Q3 and below Q1. Data values outside this range are plotted as + markers. The bold line in-

side each box indicates the median, while the dot indicates the mean. Asterisks denote comparisons

where statistical significance is reached (Mann–Whitney U-test; ∗P < 0.05 and ∗∗P < 0.001; χ2-test;
∗∗∗P < 0.005).

4.3.4 Coherence analysis

The synchronization within pairs of simultaneously recorded neurons was quanti-

fied with the coherence. Simultaneous recordings were obtained from 171 pairs of

neurons, from which 129 were assigned to the sensorimotor STN and 42 to the re-

maining STN. When all frequencies bands were considered, 77 of 129 (59.7%) of these

pairs in the sensorimotor STN and 22 of 42 (52.4%) in the remaining STN exhibited

a significant coherence in at least one frequency band. The significant coherence in

the two parts was not significantly different (Fisher exact test, P = 0.47). Figure 4.9

shows the proportion of neuron pairs having significant coherence across the five

frequency bands. In both STN regions, neighboring STN neurons showed synchro-

nized activity in all frequency bands. In the theta, alpha, beta and low gamma band,



92 4 Activity and connectivity within STN

on average significant coherence between neuron pairs was more often observed in

the sensorimotor STN than in the remaining STN, while the opposite was seen for

the high gamma band. Except for the beta band (Fisher exact test, P = 0.015) this

difference between the two STN areas did not reach statistically significance.

Of 171 coherences, 122 were calculated between neurons recorded from one

micro-electrode (local coherence) and 49 were calculated between neurons recorded

from two separate micro-electrodes 2–4 mm apart (global coherence). When all fre-

quencies bands were considered, the percentage of significant local coherence was

not significantly different than the percentage of global coherence (Fisher exact test,

P = 0.30; 60.7% and 51.0%, respectively). Moreover, the proportions of significant

coherence for each frequency band did not significantly differ across the type of co-

herence, see Table 4.4.

We extracted 81 pairs of neurons from 17 STN where in the contralateral hemi-

body of the PD patient tremor was present. There was no difference between these

‘tremor’ pairs and the remaining pairs (n = 90) with respect to the distribution of

significant coherence across frequency bands, see Table 4.4.

Table 4.4 Distribution of significant coherence between simultaneously recorded neuron pairs

across frequency band as function of type of coherence and as function of tremor.

Frequency

band

Type of coherence Tremor

Local

(n = 122)

Global

(n = 49)

P-value Yes

(n = 81)

No

(n = 90)

P-value

Theta 7 (5.7) 5 (10.2) 0.33 6 (7.4) 6 (6.7) 1.00

Alpha 9 (7.4) 1 (2.0) 0.29 5 (6.2) 5 (5.6) 1.00

Beta 34 (27.9) 12 (24.5) 0.71 25 (30.9) 21 (23.3) 0.30

Gamma low 23 (18.9) 11 (22.4) 0.67 18 (22.2) 16 (17.8) 0.57

Gamma high 28 (23.0) 11 (22.4) 1.00 21 (25.9) 18 (20.0) 0.37

Percentage values are given in parentheses. P-values are based on Fisher exact test.

4.4 Discussion

The current study shows that single neurons in the sensorimotor part of the STN of

PD patients have significantly higher mean firing rate and exhibit significantly more

burst-like activity in comparison to neurons in the remaining part of the STN. Fur-

thermore, coherence analysis of spike patterns between neuron pairs in the Parkin-

sonian STN has demonstrated that significant coherent beta band activity is present
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Figure 4.9 Distribution of significant coherence between simultaneously recorded neuron pairs

across frequency band in the sensorimotor (n = 129) and remaining (n = 42) part of the STN.

Neighboring STN neurons in both STN region show synchronized activity in all frequency bands.

Proportion of significant coherence in the beta frequencies (13–30 Hz) in the sensorimotor STN is

significantly higher than that in the remaining STN (Fisher exact test; ∗P = 0.015).

more often in the sensorimotor part of the STN than elsewhere in the STN. In other

frequency bands this difference in coherence cannot be demonstrated.

4.4.1 Dorsal–ventral versus sensorimotor part of the STN

Earlier studies, that have investigated differences in neural activity within the STN,

have subdivided the STN in successive adjacent layers going from the dorsal to

the ventral border but then along the stereotactic z-axis or the electrode trajectory

[6, 44, 178, 188, 212, 223, 230]. In contrast to these studies, we have divided a generic

atlas representation of the STN into two regions based on the functional territories of

the STN, which are based on earlier studies in animal and human with the sensori-

motor circuit more predominantly located in the dorsolateral STN [150, 162, 178].

Therefore, we have mapped for each patient its classified multichannel MERs to

what we call the ‘atlas STN’. This provides a more precise functional assignment

of position to the observed activities (MER). Of 29 STNs analyzed in this study, 28

received a permanent DBS electrode from which 24, 1 year after surgery, appeared

to have their clinically most effective contact in our defined sensorimotor ‘atlas STN’

or slightly above it and only four in the limbic associative ‘atlas STN’. This data con-
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firms that the sensorimotor part of the STN is the preferential location for DBS. The

reason why some final contact points are located more ventrally from the sensori-

motor part of the STN is partly due to unacceptable side effects at other locations as

well as an inherent inaccuracy of about 1 mm in the location of the final contact point

used for stimulation. Therefore, it must be concluded that in the sensorimotor part

of the STN, where DBS appears most effective, also the spike characteristics of single

neurons are different including higher mean firing rate, more burst-like activity and

more often interneuronal coherence in the beta band.

The literature is not unambiguous as to how the STN should be subdivided

into functionally different territories [107]. Prior to spike train analysis we subdi-

vided the ‘atlas STN’ into two parts such that our defined sensorimotor ‘atlas STN’

corresponded closely to the sensorimotor part defined in the work of Benarroch

[17], Hamani et al. [75], Parent and Hazrati [162]. Another unresolved question is

whether the border between the different functional territories of the STN is sharp,

as it is in our case, or a gradient.

4.4.2 Multi-unit versus single unit analysis

Instead of following the approach of extracting the envelope of the total MER signal

by high-pass filtering and full-wave rectification [143, 144, 148], we concentrated

our analysis specifically on spike trains from single units extracted from the MER

signal, which in fact consists of a superposition of multiple units. In this way, we

are able to distinguish between various firing patterns of STN neurons. In addition,

information on functional connectivity between neighboring neurons and neurons

that are several millimeters apart can be obtained via local and global coherence

analysis.

To have full control over how spikes from the MERs are extracted and to assign

each spike to putative neurons, instead of using existing spike sorting software, in

the current study a new spike sorting algorithm has been developed. Except that the

current spike sorting algorithm makes use of existing methods for each step (spike

detection, feature extraction and clustering), it is optimized for our data by combin-

ing suitable methods. In most studies that make use of spike sorting [6, 188, 197, 223],

declarations of the spike trains quality, including whether they are well-isolated, are

made without tests and/or are only based on visual inspection. In contrast, we have

used existing tests [54, 84, 101] to address the quality of the spike trains in an objec-

tive and standardized manner.
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4.4.3 Percentage of coherent neuron pairs in beta band

This study confirms the observation of other studies [6, 120, 197, 223] that within

the STN, pairs of neurons can be found that fire synchronously in the beta band.

We found that 26.9% of the pairs recorded from the same or two separated micro-

electrodes were significantly coherent within the beta band. This is comparable to the

25.4% in Weinberger et al. [223] and 30% in Levy et al. [120], where coherence was

calculated between two single/multi-unit spike trains recorded from two separate

micro-electrodes.

Interneuronal coherence in the beta band was observed in a lower proportion of

17.9% in a study of Amtage et al. [6]. One of their explanation for the relatively low

beta synchronization was that only patients with strong rest tremor were selected,

suggesting that beta synchronization was more a feature of the other PD symptoms.

In contrast, Levy et al. [120] did not find beta band synchronous pairs in patients

without tremor. This led them to conclude that beta oscillatory activity was present

primarily in patients with tremor. In our group of patients we did not find a relation

between tremor and interneuronal coherence in any of the five frequency bands. This

is in agreement with two other studies [197, 223], where also interneuronal coherence

in the beta band is found in PD patients without tremor.

In the current study beta coherence was present in 30.4% (14 of the 46) of the cases

where beta peaks were detected in the spike pattern of at least one of the two single

neurons. This finding is not in agreement with Weinberger et al. [223], who found a

percentage of 88.2% (15 out of 17). Moreover, only 43 of the 248 (17.3%) single units

in our study displayed a significant peak in the beta band, whereas in the study of

Weinberger et al. [223] this was the case in 58 of the 200 (28%) single/multi-units.

4.4.4 Coherence in other frequency bands

The percentage of neuron pairs with significant coherence (60.7%) recorded from

one micro-electrode (local) and the percentage of neuron pairs with significant co-

herence (51.0%) recorded from two separate micro-electrodes (global) is comparable.

This indicates that the functional connectivity within the STN may spread out over

distances of several millimeters. This is consistent with the results of Amtage et al.

[6] who have also demonstrated significant interneuronal tremor coherence across

such distances. Amtage et al. [6] have observed also a high amount of partial coher-

ence and conclude that the STN tremor network is widely extended and strongly

coupled. We could not perform a partial coherence analysis, as a consequence of

our strict selection criteria for spike trains. Therefore, we had only a few recordings
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that consisted of three simultaneously recorded neurons, which was not enough to

come to any statistical significant conclusion. A high level of partial coherence may

exclude a sparsely connected network, however, it does not differentiate between

a network that is densely connected or has a small world architecture [37, 222]. In

a small world network, in contrast to a densely connected network, the number of

neurons with widespread connections and/or large number of connections is small.

‘Long range’ neurons in a small world network serve as common input to many

neurons. Finally, the amount of coherence and partial coherence cannot rule out that

the significant coherence between two STN neurons is the result of a common input

from another brain region much further away located, for example, via the hyperdi-

rect pathway from the cortex to the STN.

4.4.5 Firing behavior

Based on the discharge density histogram, the most frequently observed firing pat-

tern within the whole STN was irregular (63%), followed by bursty (29%) and the

regular (8%) discharge. This is in good agreement with a recent study by Seifried

et al. [188]. Whereas in our study only with respect to the burst-like activity a sta-

tistically significant difference was found between sensorimotor part and elsewhere,

for Seifried et al. [188] this was the case for regular and irregular activity. On the other

hand, they did not find a significant difference in the firing rate, AI and CV of the ISI-

distribution between the three STN subdivisions, whereas we did for our two STN

subdivisions. This may be caused by the different approach in firing pattern clas-

sification, however, a more likely possibility for the difference is that we subdivide

the STN in two regions based on the functional territories of the STN, while Seifried

et al. [188] subdivide the STN in three regions along the stereotactic z-axis. A lower

firing rate in the ventral STN was described in another report Rodriguez-Oroz et al.

[178]. Our values for the firing rates and CV of the ISI-distributions are comparable

to their values.

4.4.6 The mechanisms underlying the pathological activity within

the STN

Experimental work using tissue slice preparations, animal models and in humans

with PD has demonstrated that neurons in the basal ganglia (BG) tend to discharge

in bursts, have altered firing rates and exhibit abnormally synchronized oscillatory
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activity at multiple levels of the BG-cortical loop, see reviews by Hammond et al. [80]

and Galvan and Wichmann [61]. However, the mechanisms underlying the patho-

logical activity in PD are still debated. Using organotypic culture preparation with

globus pallidus pars externa (GPe) and STN with frontomedial cortex and dorsolat-

eral striatum, Plenz and Kital [170] conclude that the observed correlated activity in

both STN and GPe is caused by the interaction between the STN and GPe rather than

being driven by an external source. It is hypothesized that autonomous pacemaking

in GPe neurons counterbalances the natural tendency of the reciprocally connected,

STN–GPe network to switch into a pathological synchronous, rhythmic bursting

seen in PD. Computational models show that increasing the inhibitory input to the

GPe, due to dopamine depletion in the striatum, leads to a suppression of the au-

tonomous GPe activity and therefore creates PD activity [114, 211]. In contrast, in

vivo experiments give evidence that synchronized beta oscillations associated with

the parkinsonian state are driven from motor areas of the cortex via the hyperdi-

rect cortico-subthalamic pathway [128, 131, 189]. Recently, Ammari et al. [5] have

shown in dopamine-depleted BG slices of mice that STN neurons, without synap-

tic inhibition from GPe, generate bursts of excitatory postsynaptic currents (EPSCs)

in response to a single electrical stimulus. Such a burst of EPSCs leads to bursts of

spikes in the STN. They hypothesize that the glutamatergic network within the STN,

that is under negative control of dopamine, amplifies the STN responses to incoming

excitation in the dopamine-depleted BG by generating bursts of spikes that will in

turn generate bursts of spikes in GPe neurons.

Our results are largely confirmatory of those in other studies in that STN neurons

of PD patients show coherent beta activity and burst-like activity. In addition, we

demonstrated that this pathological activity was more a feature of the neurons in

the sensorimotor STN than of the neurons in the remaining STN. However, with our

available data and analysis we could not discover the source of the synchronized

activity within the STN and resolve the mechanism behind the bursts in the STN.

4.4.7 Effect of false spike detection and clustering

As a consequence of the large number of false-negative errors, the true firing rate of

neurons, which are classified as environmental with more than 10% of their spikes

subthreshold, is underestimated and therefore the firing pattern may be classified

incorrectly. The number of these neurons was equally distributed among the sen-

sorimotor and remaining part of the STN (41% and 48%, respectively). Thus, the

influence on the firing rate and firing pattern is comparable for both STN regions.

When we leave out the environmental neurons we also obtain a significantly higher
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firing rate and CV, a significantly lower AI and significantly more bursty neurons for

the sensorimotor part (data not shown).

False negative and false positive errors in spike sorting may considerably in-

fluence the spike train measures related to synchrony, auto- and cross-correlation

[10, 65, 165]. When spike sorting errors occur independently for two neurons un-

der considerations, Pazienti and Grün [165] found that both types of error always

reduce the significance of correlating firing. If two neurons are sorted from two dif-

ferent electrodes their spike sorting errors are independent, whereas their errors may

also correlate when sorted from the same electrode. Correlated errors are created by

ignoring overlapping spikes or by assigning spikes unjustly to another neuron (clus-

ter overlap in the feature space). Removal of the overlapping spikes will remove

information about functional connectivity between neurons. Moreover, inappropri-

ate sorting of overlapping spikes may produce artefacts in the cross-correlograms

and thereby introduce artificial correlations between pairs of neurons recorded from

the same electrode [10]. Artificial correlations caused by removal of the overlapping

spikes are diminished by assessing the statistical significance of the coherence with

surrogate data that mimic the removal of the overlapping spikes. Pazienti and Grün

[165] investigated the effect of incorrectly assigning spikes from one neuron to the

other and found that this type of error may lead to false positive correlation between

the two neurons involved. Therefore, we have excluded neurons from the analysis

with a low quality of cluster separation and a large fraction of ISI violations.

4.5 Conclusions

Based on firing rate, discharge pattern of individual cells and the interneuronal co-

herence the sensorimotor part of the STN can be distinguished from the remaining

part of the STN. The algorithm used to calculate the mentioned parameters are fast

enough that they can be performed perioperatively during the evaluation phase of

the MER. Ultimately, the firing behavior analysis of the recorded spike trains in the

STN can be of extra help to the neurologist and neurosurgeon to determine particu-

larly the sensorimotor part of the STN for the placement of the DBS electrode.



CHAPTER 5

A multi-site electrode system to measure local field

potentials in a rat model of Parkinson’s disease

5.1 Introduction

To obtain insight in differences in the dynamical behavior within nuclei of the

basal ganglia under normal and Parkinsonian conditions, we studied a rat model

of Parkinson’s disease (PD). There are several animal models of PD, see Betarbet

et al. [25], Bové et al. [30] for reviews. Since the loss of dopaminergic neurons within

the substantia nigra pars compacta (SNc) is a pathological hallmarks of PD and un-

derlies the pathological dynamics of the basal ganglia [80], most animal models of

PD using specific dopaminergic neurotoxins. At present, application of 1-methyl-4-

phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity is the best available toxin-

induced animal model of PD [186]. However, this model is not available for rat. We

therefore used the 6-hydroxydopamine (6-OHDA) model. This neurotoxin disrupts

the nigrostratial dopaminergic pathway when administered to the median forebrain

bundle [25, 30, 49, 94, 100, 186] and thereby mimics the striatal dopamine deficiency

observed in PD patients.

A multi-site electrode system was used that allowed us to record simultaneously

local field potentials (LFP) in different nuclei of the basal ganglia, notably the cau-

date putamen, the globus pallidus pars externa (GPe), the globus pallidus pars in-

terna (GPi), the subthalamic nucleus (STN), the SNc and three other brain parts: the

ventrolateral thalamic nucleus (VL), the primary motor cortex (M1) and the pedun-

culopontine nucleus (PPN).

The STN–GPe network acts as the pacemaker of the basal ganglia. Its patholog-

ical behavior in PD has been studied in computational models [181, 211]. The PPN

modulates the STN and also connects to the brainstem. It is used as a target for

electrical stimulation [97, 169], and its role in a network simulation model has been

investigated [124]. The fundamental problem with computational studies is the lack

of knowledge about the many physiological parameters involved. Having available

99
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information on the network behavior may help to tune network models [136]. Espe-

cially important is to know how electrical activity in the different part of the basal

ganglia is altered from a normal state to a PD state.

The electrode system was physically implemented in the form of a prefabricated

teflon block. Isolated electrode wires were inserted through thin holes, that were

based on the desired positions in the brains on the teflon block, glued and cut at the

appropriate length. A canula was placed in a hole to administer the toxin. In this

way we were able to record in up to 8 different brain locations of freely moving rats

both in a normal and a PD state.

5.2 Methods

5.2.1 Subject

We used 12 male rats (Wistar Unilever, Harlan, The Netherlands), which were 3

months old and weighted 400–450 g at the time of surgery. Prior to surgery the rats

were housed in pairs (High Makrolonr cages with Enviro Dryr bedding material

and cage enrichment) with free access to food and water and were kept at a reversed

12–12 h light-dark cycle (light off at 8:30 AM). After surgery the rats were housed

individually in order to prevent the rats from chewing on each other measurement

system. All experimental protocols were authorized by the Ethical Committee on

Animal Experimentation of the Radboud University Nijmegen (RU-DEC). Efforts

were done to keep the discomfort of the animals as minimal as possible.

5.2.2 Construction of an electrode system suited for multi-site LFP

recordings

A self-constructed electrode system was manufactured for multi-site local field po-

tential recordings at specified brain locations [126, 217]. It consisted of a 8.5 mm ×

4 mm, 3 mm thick Teflon block, which contained small holes located at the rela-

tive anterior/posterior (A/P) and medial/lateral (M/L) coordinates of the electrode

target structures as determined by the rat-brain atlas of Paxinos and Watson [164].

In addition, it contained a bigger hole located at the relative A/P and M/L coor-

dinates of the medial forebrain bundle for a stainless-steel guide cannula (diameter:

222 µm), used to inject 6-hydroxydopamine (6-OHDA). This block was fixed in a mi-

cro manipulator, which allowed us to insert electrode wires (stainless steel electrodes
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insulated with polyamide, diameter: 127 µm, only the cutting edge of the electrode

was not isolated) and the cannula through the holes and set them to their accurate

depth coordinates. Wires and cannula were fixed to the Teflon-block by glue. The

electrodes were fixed at the top-site to a connector pin which was entered into an

electrode pedestal suitable for the connection to a multi-lead electrode cable. See

Figure 5.1 for an overview of the construction of the multi-site recording system.

Electrode

pedestal

Electrodes

Cannula

Fixation clamps

manipulation scale

Hole

electrode

Hole cannula

Hole

electrode

holder

8.
5 

m
m

4 mm A B

C D

Metal plate

Figure 5.1 Parts and equipment used to manufacture the multi-site electrode system with cannula.

It consists of a custom made Teflon block (A) with holes at the appropriate locations for the elec-

trodes and the cannula. In the bottom left corner the block also has a bigger hole for the insertion of

an electrode holder. This is needed during the implantation procedure for thorough placement of

the system on the skull. The block is fixed with clamps in a micro manipulator (B,C) to assist in the

insertion of the electrodes and the cannula through the holes. By turning on the manipulation scale,

the distance between the Teflon block and a stable metal plate can be adjusted to set each electrode

and the cannula to its desired length. Finally, electrodes are entered into an electrode pedestal (D)

suitable for the connection to a multi-lead electrode cable.



102 5 Measuring LFP in a 6-OHDA rat model

5.2.3 Surgery

The multi-site electrode system with guide cannula was implanted stereotactically

under isoflurane anesthesia. The head of the rat was fixed in the stereotactic in-

strument in such a way that we obtained a flat skull position between lambda and

bregma. At the start of surgery, rats received a subcutaneous injection of the anal-

gesic Rimadylr mix (1:5 Rimadyl:NaCl, 0.4 ml/kg) and an intramuscular injection

of atropine (0.1 ml) to prevent excessive salivary production. Body temperature was

controlled and conserved via a heating pad. The local anesthetic Lidocaine was used

on the incision points. Holes were drilled into the skull on top of the right hemi-

sphere for the insertion of electrode wires and cannula, see Table 5.1 for the posi-

tions. In addition, two holes were drilled behind lambda for the insertion of ground

and reference electrode. Four holes were drilled for the placement of screws (un-

determined coordinates), that served as anchors for the cement in the fixation step.

Electrode wires and cannula, fixed in the Teflon block at the appropriate position

and length, were simultaneously entered into the brain. Ground and reference elec-

trodes were placed on top of the cerebellum. The system was fixed to the skull via

dental acrylic cement (Dental Union, Groningen, The Netherlands), that adheres to

the screws and system. A dummy electrode was inserted in the cannula to prevent

clogging (Figure 5.2). Postoperative analgesic Rimadylr (24 and 48 h after surgery)

was administered and rats were allowed to recover for 2 weeks.

Table 5.1 Stereotactic coordinates in mm of the electrode target structures and

the end point of the cannula. All coordinates were determined relative to

Bregma according to the rat-brain atlas of Paxinos and Watson [164].

A/P M/L Depth

Primary motor cortex −0.5 −1.5 1.5

Caudate putamen −0.5 −3.0 6

Globus pallidus pars externa −1.2 −3.3 7.8

Globus pallidus pars interna −2.1 −2.6 8.7

Ventrolateral thalamic nucleus −2.1 −1.7 7.1

Subthalamic nucleus −3.6 −2.6 8.9

Substantia nigra pars compacta −4.8 −2.3 8.7

Pedunculopontine nucleus −7.2 −2.0 8.1

Cannula −4.0 −1.5 8.5

Abbreviations: A/L, anterior/posterior; M/L, medial/lateral
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Figure 5.2 The rat is fixed in a stereotactic frame (A) and receives isoflurane anesthesia via a mask.

The rat is placed on a heating pad to control and conserve the body temperature. Small burrholes

are made in the skull above the intended recording sites and a bigger one above the medial forebrain

bundle (B). In addition, screws are placed, which later help to fixate the whole system to the scull.

The multi-site electrode system is connected to the stereotactic arm with an electrode holder (C)

to assist in lowering it into the brain. Dental cement is used to fixate the whole sysem to the rats

head (D).

5.2.4 Unilateral lesion of the nigrostriatal pathway

Three weeks after surgery the rats were given a unilateral injection of 6-OHDA

to destroy the dopaminergic nigrostriatal pathway. The neurotoxin 6-OHDA (6-

hydroxydopamine hydrobromide with 0.01% ascorbic acid; Sigma, Zwijndrecht, The

Netherlands) is highly light-sensitive, and therefore was dissolved immediately be-

fore use in Ringer to a final concentration of 3 µg/µl and covered with aluminium

foil. Then, 4 µl of 6-OHDA solution was infused at a rate of 1 µl/min through the

implanted guide cannula using an injection needle connected by a flexible plastic
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tube to a Hamilton syringe and inserted 0.5 mm beyond the tip of the cannula to

target the medial forebrain bundle. The infusion rate was controlled manually by

fixing the syringe into a mechanic holder and setting its piston into motion by turn-

ing the holder-screw. The tube was filled with distilled water and afterwards the

6-OHDA solution was inflated into the tip of the needle. The needle remained at the

target site for 10 min after the infusion was completed to ensure diffusion of the 6-

OHDA into medial forebrain bundle. The rats received an intraperitoneal injection

of 25 mg/kg desipramine (Sigma, Zwijndrecht, The Netherlands), 30 minutes prior

to the 6-OHDA infusion to protect noradrenergic neurons.

5.2.5 Recording of local field potentials

Two weeks after surgery (pre-lesion) and four weeks after 6-OHDA lesion LFPs were

derived from the rats under two conditions: freely moving and on a moving belt. For

the free moving condition the rats were placed individually in a transparent Plexi-

glas recording cage (l × w × h = 25× 20× 35 cm), filled with some bedding material

and placed in a Faraday cage. The rats were connected to recording leads for multi-

channel LFP recordings attached to a swivel-contact, which allowed the registration

of LFPs in freely moving animals. The LFP signals were amplified with a physiologi-

cal amplifier (TD 90087, Radboud University Nijmegen, Electronic Research Group),

filtered with an analog band pass filter of 1 to 100 Hz, and digitalized with a constant

sample rate of 2048 Hz using the WINDAQ acquisition system (DATAQ Instruments

Inc., Akron, OH, USA). In addition to the LFP signals the movements of the rat were

registered by means of a Passive Infrared Registration (PIR) system (RK2000DPC

LuNAR PR, Rokonet RISCO Group), that was attached to the ceiling of the record-

ing cage. The rats were placed in the registration box and connected to the swivel-

contact, 1 hour prior to the actual recordings in order to habituate to the recording

conditions. Each rat was recorded for a period of 2 hours during the dark phase. The

rest state of the rat was assessed with the following inequality:

|x(t)PIR − E{x(t)PIR}| ≤ σ{x(t)PIR}; (5.1)

were x(t)PIR is the PIR signal. E{} and σ{} denote the expected value operator and

the standard deviation operator, respectively. We considered the rat at rest if the

inequality holds for x(t)PIR on a continuous time interval longer than 3 minutes.

For the moving belt condition we used a special Plexiglas recording cage (l × w ×

h = 26 × 10 × 35 cm) whose floor was a rubber belt driven by two electrical power

drives that were fed by an external feeding [187]. The rats were placed individually
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in this recording cage on the rubber belt, which was also placed in the Faraday cage.

The LFP leads were reconnected to a swivel-contact to guarantee free movements.

The LFP data were obtained in the same way as under the free moving condition,

except that we used a 50 Hz Notch filter to reduce the noise produced by the power

drives of the moving belt. In addition to the LFP recordings, the rats were video-

taped from a lateral view while they walked on the moving belt. All rats were trained

until they were able to run steadily on the moving belt prior to the actual recordings.

To minimize the discomfort of the animals, the moving belt recordings were per-

formed directly after the freely moving recordings so that the animal could remain

connected to the LFP leads. First, a rat had 3 min to adapt to the recording condition

(speed zero). Next, the belt was turned on and set to a low running but challenging

speed for 3 min, followed by a higher running speed for 3 min. The two moving

belt speeds were separated by a 1 min rest period (speed zero). To enable later syn-

chronization of the video and LFP recordings, a time marker equipment was used,

including a digital stopwatch, which was placed directly in the picture frame of the

camera, and a standard button box, whose square-wave signal was recorded in an

extra channel of the WINDAQ system. During the experiment, square-wave mark-

ers were set at the beginning and the ending of each moving belt speed. Only LFP

recording segments where the animal walked smoothly, continuously, and regularly

were used.

5.2.6 Behavioral tests

Behavioral test were used to relate the extent of the unilaterally 6-OHDA lesion to the

PD-like symptoms. The behavioral were performed two weeks after surgery (pre-

lesion) and four weeks after 6-OHDA administration in the following sequence: 1)

adjusting steps test; 2) rotarod test; 3) open field test; 4) apomorphine induced lo-

comotion. For half of the rats, the LFP recordings and moving belt were performed

prior the behavioral test and for the other half between the open field test and the

apomorphine induced locomotion.

Adjusting steps test

To assess rigidity we performed the adjusting steps test as described by Lindner et al.

[123]. In short, the rat was gently pushed laterally (left and right) over a distance of

100 cm at approximately 20 cm/s on a smooth stainless-steel table by placing one

hand next to the left or right side of the rat. The number of forelimb adjustment steps
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with the forelimb on the side to which the rat was being moved was counted for both

directions. The test was video-taped such that the forelimb was clearly visible so that

counting afterwards could be done. The score for each direction was calculated as the

mean of 2 trials.

Rotarod test

The rotarod test was used to assess the animals’ motor performance and coordina-

tion [78, 180]. The rotarod consists of a motorized rotating rod, whose speed and

acceleration can be controlled. Each rat was placed individually on the rod, perpen-

dicular to the axis of rotation and with its head facing the direction of the rotation.

Tests were done at 8, 12 and 16 rpm. Each rotation speed started at 8 rpm and was

accelerated with 0.4 rpm/s to its final speed. Pre-surgery the animals were trained to

walk on the rod at each speed. The length of time that each animal was able to stay

on the rod at each rotation speed was measured and was limited to a maximum of

120 seconds (including acceleration time). Each rat was tested in three consecutive

trials, with the best time for each speed taken for data analysis. Test was performed

in a room with dimmed light.

Open field test

The open field test was used to examine the locomotion activity and exploratory

behavior in a novel and unfamiliar environment [45, 218, 221]. The open field con-

sisted of an open square box (100 × 100 cm; 40 cm height) with black walls and

floor and was illuminated at 110–130 lx light intensity. Immediately after an animal

was placed individually in the center of the open field, its behavior was recorded

for one hour using a installed camera above the center of the field and the Etho-

vision tracking software (Ethovision, Noldus Information Technology, Wageningen,

The Netherlands). The following behavioral parameters were registered: total trav-

eling distance in the first 10 min as a measure for locomotion and the time spent in

the 36 × 36 cm imaginary center square of the field as a measure of fear. After test-

ing each animal, the floor of the open field was thoroughly cleaned with an ethanol

solution and water.

Apomorphine induced locomotion

The number of rotations in the direction of the lesion in response to apomorphine

reflects the severity of unilaterally dopamine depletion caused by 6-OHDA and
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subsequent development of dopamine receptor super-sensitivity Ungerstedt and

Arbuthnott [214]. Apomorphine-induced rotation was measured after subcutaneous

injection of 0.5 mg/kg apomorphine ((R)-(-)-apomorphine hydrochloride; Tocris) on

two sites on the neck. Ten minutes after injection, the animal was placed individually

in a round black bucket (diameter ≈ 30 cm), and its rotation behavior was recorded

for 40 minutes using an installed camera above the center of the bucket. Afterwards,

full 360°contralateral turns (away from the side of the lesion (cl)) and ipsilateral turns

(toward the side of the lesion (il)) from an arbitrary chosen landmark were counted.

According to van Oosten and Cools [218], the turning drive, Rdrive = cl + il, and the

turning direction preference, Rpref = 100(cl− il)/Rdrive, were computed.

5.2.7 Post-mortem verification of electrode site

After the experiment was completed, brains were removed for histological verifi-

cation of the electrode locations. Rats were deeply anesthetized by intraperitoneal

injection of a high dose of sodium pentobarbital (Nembutal). Subsequently, small

electrolytic lesions were made at the tip of the recording electrode by passing an an-

odal direct current of 25 µA through the electrode for several seconds (10–20 s). Once

lesion are set, the animals were perfused intracardially with physiological saline fol-

lowed by a solution of 2% potassium ferrocyanide dissolved in 4% paraformalde-

hyde phosphate-buffer. The iron deposits left at the electrode tip after the electrolytic

lesioning reacts with the potassium ferrocyanide to form a blue dot, clearly marking

the electrode tip. Next, the brains were removed and stored in 4% paraformaldehyde

phosphate-buffer for 24 hours and transferred into 30% buffered sucrose where they

remained until they had sunk to the bottom. Brains were cut in 40 µm coronal slices

with a microtome and slices containing the blue dots of the electrode tips are stained

with Cresyl Violet.

5.3 Results

5.3.1 Drop-out rates

At different stages of the experiment rats were dropped out from the study. Firstly,

three rats died due to surgery. Although, implanting the multi-site electrode system

into the brain could lead to death due to brain injury (hemorrhage), the three rats

died before insertion of the system. Secondly, two animals probably died due to the
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6-OHDA injection. Bilateral infusion of 6-OHDA in the MFB is commonly associated

with severe impairments in drinking and feeding, resulting in a high mortality rate

of animals. However, all animals showed decrease in body weight after the unilateral

6-OHDA injection. Finally, two rats lost their electrode system. Therefore 7 out of 12

rats were dropped out, leaving a total number of 5 rats.

5.3.2 Electrode Positioning

The brains of the five rats that fulfilled the experiment were subjected to histology.

Although one animal lost its electrode system during the last experimental day, ver-

ification of the electrode locations was possible as the electrode shaft and tip were

visible on the brain slices. The histological outcome for each rat is shown in Table 5.2.

In total we placed 40 electrodes in the five animals from which 14 (35%) were success-

fully placed in the planned target structure and 3 (7.5%) at the boundary. Especially,

electrodes for the small structures were misplaced. For our purpose to investigate the

functional connectivity between the different nuclei the number of correctly placed

electrodes per rat should be at least two. In one case we did not fulfill this require-

ment.

Table 5.2 Histological verification of the electrode locations

Rat M1 CPu GPe GPi VL STN SNc PPN

1 − + − − − − + ⋆

3 − + − − − − − −

41 + + + − + − + −

7 + ⋆ + − − − − −

9 + + ⋆ + − ⋆ − −

The +,− and ⋆ marker indicates if the electrode tip was inside, outside or at the border of the target

structure,respectively. Abbreviations: M1, primary motor cortex; CPu, caudate putamen; GPe, globus

pallidus pars externa; GPi, globus pallidus pars interna; VL, Ventrolateral thalamic nucleus; STN,

Subthalamic nucleus; SNc, Substantia nigra pars compacta; PPN, Pedunculopontine nucleus.
1 Verifications are performed without electrolytic lesions at the electrode tips.

5.3.3 Behavioral test

The high preference percentage to rotate to the contralateral direction and the high

turning drive in rats 4, 7 and 9 post-injection of 6-OHDA indicated successful
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dopamine depletion (Figure 5.1A). Rats 4, and 7 pre-lesion and rat 3 post-lesion had

a preference to rotate to the contralateral, ipsilateral and contralateral direction, re-

spectively, but their turning drive was low and therefore not suspicious. Only rats 4

and 7 showed a large reduction in locomotion after 6-OHDA injection, while all rats

showed more fear to enter the center of the open field (Figure 5.1B). The time during

which an animal could stay on the rotarod at 16 rpm was lower in all animals after

6-OHDA injection (Figure 5.1C). Except for rat 7, the number of adjustment steps af-

ter 6-OHDA injection were not significantly different between the contralateral and

the ipsilateral forelimb , indicating that they did not suffer from rigidity.

5.3.4 Local field potentials

Figure 5.4 and 5.5 show the LFP recordings of a rat at rest and running on a mov-

ing belt, respectively. In both situation we were able to derive good signals from

the implanted electrodes. The quality of the signals was comparable between pre-

lesion and post-lesion. Thus, the signals did not deteriorate over time due to tissue

formation around the electrode tips. Interestingly, the amplitude of the LFP signals

decreases during moving belt as compared to rest situation.

5.4 Discussion

In this Chapter we described the development of a multi-site electrode system to si-

multaneously measure the local field potential in different brain structures relevant

for Parkinson’s disease in freely moving rats. We have shown that we can success-

fully record from the electrodes (good signal-to-noise ratio) when the rat is at rest or

is running on a moving belt, even seven weeks after system implantation. Moreover,

we were able to render the animals parkinsonian with unilateral medial forebrain

bundle 6-OHDA infusions via the implanted cannula. This set-up allowed us to in-

vestigate the change in the functional connectivity between different nuclei from

normal to PD state in the same animal at rest or during forced exercise.

The analysis of the interaction and the the cooperativity (functional connectivity)

between the different nuclei in normal and PD state can be done by using measures

of association such as correlations or coherences among recording sites. However,

in our set-up the LFPs recorded at the different recording sites were all amplified

with respect to the same common reference. This introduces a signal common to all

channels and depending on its amplitude it can dominate the coherence estimate

[55]. One way to overcome this problem is to use two electrodes in each structure
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Figure 5.3 To examine the severity of unilaterally dopamine depletion the apomorphine induced

locomotion test (A) is performed. To relate the extent of the 6-OHDA lesion to the PD-like symptoms

the open field test (B), rotarod test (C) and adjusting steps test (D) are performed.
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Figure 5.4 Example of 10-s long simultaneously recorded LFP set of rat 9 at rest, before (A) and

after (B) the 6-OHDA lesion. The abbreviation of the nuclei names next to the LFPs are the intended

nuclei, see Table 5.2 if they are placed correctly.
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Figure 5.5 Example of 10-s long simultaneously recorded LFP set of rat 9 running on the moving

belt at the highest speed, before (A) and after (B) the 6-OHDA lesion. The abbreviation of the nuclei

names next to the LFPs are the intended nuclei, see Table 5.2 if they are placed correctly.
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and off-line take the potential difference between the two electrodes (local bipolar

derivation). This approach requires another larger electrode pedestal for the extra

electrodes, which make the fixation to the skull difficult. In addition, all channels

should be recorded with exactly the same amplification gain factor. However, due to

tissue formations around the electrode its impedance is subjected to uncontrollable

and continuous changes. Hence, the amplification gain is fluctuating and can differ

across the channels. Another way is to use a connectivity measure that is less affected

by a common signal originating from the same reference. Granger causality is a linear

directional measure of connectivity and has been successfully applied to LFP data

from animals [22, 184]. The Granger causality analysis is based on a multivariate

autoregressive modelling of LFP time series [22]. In this approach the instantaneous

component of the interactions, which is mainly affected by the common signal, can

be discarded [22, 184].

Generally speaking, it is assumed that LFP reflects the incoming synaptic activ-

ity (excitatory and inhibitory postsynaptic potentials) [102, 141], while spikes re-

flect the output of the local network [59, 117]. However, other slow processes may

contribute to the generation of LFPs, see Moran and Bar-Gad [143] and references

therein. To use the observations of population level recordings (LFPs) to tune our

spiking models we have to average spiking activity in one way or another.

Tan et al. [206] developed an electrode construction using clinical principles to

perform DBS unilaterally or bilaterally in freely moving rats. They test their set-up

in a rat model of PD (bilateral 6-OHDA infusion in the striatum) and a rat model of

Huntington’s disease (transgenic rats). The way they implanted and fixed the elec-

trode system is quite similar to our multi-electrode system. It would be interesting

to extend our system with their DBS-electrode, such that we could also measure the

effect of DBS on network connectivity. Especially, for stimulation protocols where

stimulation is not applied continuously, such as coordinated reset [208], it is worth

seeing what happens with the network connectivity in the off-stimulation period.

Tan et al. [206] achieved dopamine depletion (PD-model) by stereotactic injections

of 6-OHDA into striatum. However, we have shown that dopamine depletion could

also achieve by injection of 6-OHDA through the implanted guide cannula into the

MFB. Thus, performing experiments with the same rat in different state (normal or

PD) is possible.

A problem we encountered with our multi-site electrode is the high number of

electrode misplacement. We could probably reduce this number by having multi-

site electrode systems for different bregma-lambda distances at our disposal during

surgery.





CHAPTER 6

Conclusions and Outlook

Deep brain stimulation (DBS), discovered by accident during thalamotomy to be ef-

fectively in reducing tremor, is now an established therapy of last resort for Parkin-

son’s disease (PD). Currently, it is widely applied in the subthalamic nucleus (STN),

the globus pallidus pars interna (GPi) and the ventral intermediate thalamic nucleus

to alleviate PD symptoms. These targets were original selected for ablation. The se-

lection was based on the classical model of the basal ganglia which explains the

symptoms of PD in terms of changes in mean firing rate of the basal ganglia nuclei.

Remarkably, DBS is continuously applied to these target nuclei and is only effective

within very specific parameter ranges, most notably at high frequencies (>100 Hz).

These parameter settings for DBS were empirically established.

Nowadays, we know that PD symptoms not only result from changes in firing

rate of the basal ganglia nuclei, but also from abnormal synchronization of neuronal

activity in basal ganglia networks. Moreover, not only the basal ganglia network is

involved in PD and not all parts of a basal ganglia nucleus are affected. These new

insights can be used to develop new and more effective stimulation protocols, and

to select new nuclei or part of a nucleus to stimulate for the treatment of PD motor

symptoms. For example, it turns out that STN–DBS is most effective if the active

DBS electrode contact is located in the sensorimotor part. In Chapter 4, we make a

valuable contribution to the growing evidence that synchronization between basal

ganglia neurons in the beta frequency band (13–30 Hz) might serve to characterize

the sensorimotor part of the STN.

To steer new stimulation therapies for PD, it is important to know in which cir-

cuitry and how the pathological activity is generated. However, the mechanisms un-

derlying the pathological activity in PD are still debated and therefore the efforts in

Parkinson’s research are focused on investigating ‘what goes wrong in the parkin-

sonian brain, and how can we reverse this pathological behavior’. Computational

modeling is a valuable tool to shed light on the mechanisms underlying the patho-

logical activity in PD and the working mechanism of DBS.

115
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Modeling brain dynamics

The brain is too complicated to capture in a single model. Not only is the numbers

of neurons too large, and do they make too many connections, in addition there are

many timescales involved, which complicates even more. A model can only address

a specific aspect of the dynamics of the brain. A good model is as simple as possible,

relates to available data and allows to make statements about possible mechanisms.

It is desirable that it makes predictions that can be verified experimentally.

Data driven modeling is nowadays the standard in neuroscience. There are many

data available and this is helpful, as there are always so many parameters unknown.

Yet, addressing specific questions requires specific data that very well may not be

available. This has played a key role during my thesis work.

In this thesis, Parkinson’s disease is the central theme. There are several issues

that complicate the task for a mathematical modeler. There are many parts of the

brain involved: not only the basal ganglia, but also the thalamus, the cortex and the

brainstem. Despite much research done in the past, there are still many questions

open about the anatomy of the basal ganglia. For instance, there is not very much

knowledge about connectivity within the various nuclei. It is even unknown how

neurons within the STN make connections. So the question arises:

Where do we start?

In 2002, Terman, Rubin, Yew and Wilson published a model for the subthalamopall-

idal network of the basal ganglia. It uses many physiological parameters, so indeed

relates to available data, and based on this model hypotheses were made on the ori-

gin of synchronized bursting. This model, which they have extended in 2004 to a

basal ganglia-thalamic network model [181], has been the starting point to investi-

gate the effect of DBS in the pedunculopontine nucleus (PPN), chapter 3 of the thesis.

It is proposed that low frequency stimulation of the PPN combined with standard

DBS of the STN is clinically more effective for PD symptoms. We were able to model

a single PPN Type I cell that reproduces firing pattern characteristics consistent with

published experimental data. In our basal ganglia-PPN network model, combined

stimulation of the PPN and STN is almost never better for the relay properties of the

PPN cell than exclusive STN stimulation. However, with PPN stimulation alone it

was possible to eliminate the clusters and thereby the low frequency (3 Hz, associ-

ated with tremor) oscillations from the entire network model. PPN–DBS is suggested

for PD patients with severe gait and postural impairment. It is an open question how

to relate these symptoms with network activity in computational models. It should

be noted that the results of this study critically depend on the chosen topography
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between the basal ganglia and the PPN and the strength of the connections. To con-

tinue in this direction requires more experimental findings about the input to this

nucleus from the various nuclei in the basal ganglia.

This was exactly the reason why we have chosen to measure local field poten-

tials (LFP) in a 6-hydroxydopamine rat model of PD. An account of this research is

the fifth chapter of this thesis. It shows that it is possible to obtain clean LFP data.

This study also showed that it is not easy to draw conclusions from the data that

would improve the mathematical models. It would be better to work with neural

mass models in combination with LFP data, than with the spiking neuron models

like the ones used in chapter 3. In addition, the setup of the experiments should be

slightly changed to make the outcome more suitable. For example, we should not

use the same reference point for all electrodes, as this complicates the connectivity

analysis. To reduce the number of electrode misplacements it would be wise to have

multi-site electrode systems for different bregma-lambda distances.

LFP or single unit data?

In 2009, I have started to analyze unique human data, obtained in the Academic

Medical Center, during DBS surgery in Parkinson patients. Chapter 4 of the thesis is

devoted to the analysis of these data. Although there are many theoretical results in

data analysis, in practice most of the assumptions underlying these, are not satisfied.

We have combined many known strategies to arrive at conclusions that have prac-

tical value in the clinic. This in itself is satisfying. It was our initial goal to also use

these data for the network models. Indeed these results are valuable. Based on spike

data of single neurons it is possible to tune networks to represent certain aspects

of the data, like the mean frequency, firing pattern and the coefficient of variation.

We have also used data from GPi to test the standard DBS protocol. The results are

in Meijer et al. [137] and are partially shown in the introduction of this thesis. The

conclusion here is that single unit data are helpful when one works with network

models. However, like always, it is never enough. Based on these data we cannot in-

fer the network connectivity. There is always the problem that is it difficult, if not

impossible, to distinguish between common input and causal connections. It may be

clear that having both LFP and spike data at one’s disposal is optimal. We foresee

that in the future it will become fashionable to integrate spiking neuron models with

neural mass models.
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Making predictions

Since 2003, Peter Tass and his group advocate a new way of stimulation for PD. The

so-called coordinated reset (CR) stimulation is supposed to be more effective than

the standard continuous high frequency stimulation. Moreover, it saves battery con-

sumption and it leads to fewer negative side effects of DBS, because most of the

time the stimulation is turned off and stimulation intensity is low. In a model study

we have investigated whether spike-timing-dependent plasticity (STDP) within the

globus pallidus pars externa (GPe) might be an explanation for this claim. This is

typically a situation where a computational model may be of help. We have deter-

mined a specific window for STDP for intra GPe connections, that does the job. The

model predicts that with CR-stimulation it is possible to switch between different

stable states of the system, one being pathological and the other resembling a more

healthy state. What remains open is to confirm this window for STDP experimen-

tally.

Where will it lead us from here?

Theory and experiment should go hand in hand. We have seen that experiments

may rise questions that first can be examined in a theoretical computational study.

From this computational study hypotheses should be put forward. This ideally will

suggest experiments that either confirm or reject the hypotheses, likely raising more

detailed questions that than will be subject for another computational study.

So far we discussed two type of models: spiking neuron models and neural mass

models. There is evidence that we must also take into account the extracellular space

and the astrocytes. In fact there are more astrocytes than neurons, and they play an

important role in calcium signaling and the buffering of ions. But the principles for

modeling and experiment as described above do not change.
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STN and GPe cell model

In Chapter 2 we consider a GPe–STN network model in which each cell is repre-

sented as a single-compartment conductance-based model, based on voltage-clamp

and current-clamp data of both populations [69, 181, 211]. Here we describe the

equations and parameters of the membrane currents of equation 2.1 for both the

STN and the GPe cell model. In both cell models, time is in ms, voltages are in mV,

ion concentrations are in mM, currents are in µA cm−2, conductances are in mS cm−2

and the membrane capacitance is in µF cm−2. The membrane capacitance for each

cell is assumed to be unity.

Membrane currents

In the STN and GPe cell model it is assumed that the instantaneous current-voltage

relation for IL, IK, INa, IT, ICa and IAHP is linear. The leak current and the voltage-

dependent currents (i.e. except IAHP) are given by Hodgkin–Huxley formalism and

are identical for both STN and GPe cells:

IL(v) = gL(v − EL)

INa(v) = gNam3
∞(v)h(v − ENa)

IK(v) = gKn4(v − EK)

ICa(v) = gCac2
∞(v)(v − ECa),

except for IT:

STN : IT(v) = gTa3
∞(v)b2

∞(r)(v − ECa)

GPe : IT(v) = gTa3
∞(v)r(v − ECa),
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where v is the membrane potential; m,h,n, a,b,r and c are (in)activation variables

(gating variables); EL, ENa, EK and ECa are the reversal potentials of the leak, sodium,

potassium and calcium current, respectively; and gL, gNa, gK, gT and gCa are maximal

conductance. The reversal potential is defined by the Nernst equation. We assume

the ionic concentrations are constant during our simulations. The maximal conduc-

tances and reversal potentials for both population models are listed in Table A.1. The

steady state of the gating variable (X∞) depends on the voltages as follows

X∞(v) =
1

1 + exp(−(v − θX)/qX)
X ∈ {m,h,n,r, a, c}, (A.1)

where θX and kX are the half (in)activation voltage and slopes, respectively. For the

T-current inactivation variable b, we used

b∞(r) =
1

1 + exp((r − θb)/qb)
−

1

1 + exp(−θb/qb)
. (A.2)

Table A.1 Maximal conductances (gx) and reversal potentials (Ex) of the membrane currents for

STN and GPe models

gx [mS cm−2] Ex [mV]

L K Na T Ca AHP L K Na Ca

STN 2.25 45 37.5 0.5 0.5 9 −60 −80 55 140

GPe 0.1 30 120 0.5 0.1 30 −55 −80 55 120

The gating variables h,n and r for both cell models are treated as slowly vary-

ing variables, whereas m, c, a and b for both cell models are treated as fast varying

variables. For the slow variables we have first order kinetics of the form:

dX

dt
= φX(X∞(v)− X)/τX(v) X ∈ {h,n,r}, (A.3)

where φX is a time scaling constant of X. The voltage-dependent (in)activation time

constant (τX) of X is given:

τX = τ0
X +

τ1
X

1 + exp(−(v − θτ
X)/qτ

X)
X ∈ {h,n,r}. (A.4)

Time for (in)activation are then given by a sigmoidal function, with τ0
X/φX as the

minimum, (τ0
X + τ1

X)/φX as the maximum, θτ
X the voltage at which the time constant
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is midway between the maximum and minimum values, and στ
X is the slope factor

which determines the level of voltage-dependence of the time constant. For the fast

variables, activation are taken instantaneous and are determined by equation A.1

and in the case for b by equation A.2. The parameter values used for the gating

kinetics of the ionic channels of the STN and GPe models are given in Tables A.2 and

A.3.

Table A.2 STN kinetic parameters

θX qX τ0
X τ1

X θτ
X qτ

X φX

m −30 15

h −39 −3.1 1 500 −57 −3 0.75

n −32 8 1 100 −80 −26 0.75

r −67 −2 7.1 17.5 68 −2.2 0.5

a −63 7.8

b 0.25 −0.07

c −39 8

Table A.3 GPe kinetic parameters

θX qX τ0
X τ1

X θτ
X qτ

X φX

m −37 10

h −58 −12 0.05 0.27 −40 −12 0.05

n −50 14 0.05 0.27 −40 −12 0.1

r −70 −2 30 0 1

a −57 2

c −35 2

The afterhyperpolarization potassium current (IAHP) also depends on the calcium

concentration instead of membrane potential and is given by:

IAHP = gAHP(v − EK)([Ca]/([Ca] + k1)), (A.5)

where gAHP is the maximal conductance and is given in Table A.1. The constant k1

is the dissociation constant of the calcium-dependent afterhyperpolarization potas-

sium current and is given in Table A.4.
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Calcium dynamics

The intracellular concentration of calcium ions (Ca2+) available for the IAHP depends

on the calcium currents (IT and ICa) and is governed by the first-order differential

equation:

d[Ca]

dt
= ǫCa(−ICa − IT − kCa[Ca]), (A.6)

where ǫCa is a constant that accounts for the effects of cell volume, buffers, and molar

charge of calcium. The constant kCa is the calcium pump rate. The constants for the

calcium dynamics for the STN and GPe models are given in Table A.4. Note that the

calcium reversal potential, that is used in the equations for IT and ICa, is not affected

by the calcium dynamics.

Table A.4 Calcium dynamic parameters

ǫCa kCa k1

STN 5e−5 22.5 15

GPe 1e−4 15 30



APPENDIX B

The ionic current equations for the PPN model

We assume that the instantaneous current-voltage relation for INa,L, IK,L, INa, IK, Ih

and INa,p is linear. These currents have the following general form:

Iion = gmaxmahb(Vm − Eion) a,b ∈ N0, (B.1)

where gmax is the maximum ion channel conductance, m is the activation gating

variable, h is the inactivation gating variable, Vm is the membrane potential and Eion

is the reversal potential. The reversal potential is defined by the Nernst equation. We

assume the ionic concentrations are constant during our simulations. The current-

voltage relation for IT has a non-linear dependence upon ionic driving force that

is described by the Goldman–Hodgkin–Katz current equation (G(Vm, [ion]i, [ion]o)).

Thus,

IT = m2hG(Vm, [Ca]i, [Ca]o)

with

G(Vm, [Ca]i, [Ca]o) = pCa
z2F2Vm

RT

[Ca]i − [Ca]o exp(− zFVm
RT )

1 − exp(− zFVm
RT )

,

(B.2)

where pCa = 10−4 cm s−1 is the maximum T-type calcium channel permeability, z = 2

is the valence of calcium ion, F is the Faraday’s constant in J V−1 mol−1, R is the gas

constant in J K−1 mol−1, T = 309.15 K is the absolute temperature, [Ca]o = 2 mM is

the extracellular Ca2+ concentration of the model cell. Intracellular Ca2+ concentra-

tion ([Ca]i) depends on T-type calcium current and is given by the following equation

d[Ca]i
dt

=
[Ca]buff − [Ca]i

τCa
− kCa IT,

where [Ca]buff = 0.00024 mM, τCa = 5 ms, kCa = 5.1821e−5 is a unit conversion factor.
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The (in)activation gating variables in equation B.1 and B.2 are described by differ-

ential equations of the form:

dX

dt
= (X∞(Vm)− X)/τX(Vm) X ∈ m,h,

where X∞(Vm) = αX(Vm)/(αX(Vm)+ βX(Vm)) is the steady-state voltage-dependent

(in)activation function of X and τX(Vm) = 1/(αX(Vm) + βX(Vm)) is the voltage-

dependent time constant. These functions are based on neurophysiological data of

the thalamocortical relay neuron [48, 88, 135], except for the persistent sodium gat-

ing variables which are based neurophysiological data of the pre-Bötzinger neu-

ron [182, 183].

Sodium and potassium leak currents

INa,L = gNa,L(Vm − ENa)

IK,L = gK,L(Vm − EK)

Sodium current

INa = gNam3h(Vm − ENa)

αm = 0.32(Vm + 55)/(1− exp(−(Vm + 55)/4))

βm = −0.28(Vm + 28)/(1 − exp((V + 28)/5))

αh = 0.12exp(−(Vm + 51)/18)

βh = 4/(1 + exp(−(Vm + 28)/5))

Potassium current

IK = gKm4(Vm − EK)

αm = 0.032(Vm + 63.8)/(1− exp(−(Vm + 63.8)/5))

βm = 0.5(exp(−(Vm + 68.8)/40))

Hyperpolarization-activated current

Ihyp = ghypm3(Vm − Ehyp)

m∞ = 1/(1 + exp((Vm + 85)/5.5))

τm = 1/(exp(−15.45− 0.086Vm) + exp(−1.17 + 0.0701Vm))
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Persistent sodium current

INa,p = gNa,pmh(Vm − ENa)

m∞ = 1/(1 + exp(−(Vm + 47.1)/3.1))

τm = 0.9/cosh((Vm + 47.1)/6.2)

h∞ = 1/(1 + exp((Vm + 57)/3))

τh = 20000/cosh((Vm + 57)/6)

T-type calcium current

IT = m2hG(Vm, [Ca]i, [Ca]o)

m∞ = 1/(1 + exp(−(Vm + 60)/6.2))

τm = 0.204+ 0.333/(exp(−(Vm + 135)/16.7) + exp((Vm + 19.8)/18.2))

h∞ = 1/(1 + exp((Vm + 84)/4))

τh = (9.33+ 0.333exp(−(Vm + 25)/10.5))H∞(−10,Vm) +

0.333exp((Vm + 470)/66.6)H∞(10,Vm)

where H∞(x1, x2) = 1/(1 + exp(x1(x2 + 81)))

In the model, time is in ms, voltages are in mV, ion concentrations are in mM, cur-

rents are in µA cm−2, conductance are in mS cm−2 and the membrane capacitance

is in µF cm−2. The membrane capacitance is assumed to be unity and the rever-

sal potentials are set to ENa = 45, EK = −95, Ehyp = −43 mV, the conductances to

gNa,L = 0.0207, gK,L = 0.05, gNa = 30, gK = 3.2, ghyp = 0.4, gNa,p = 45 mS cm−2.





APPENDIX C

Spike sorting

Spike detection

Spikes were detected by amplitude thresholding the MER signal. In particular, local

maxima of the MER signal that exceed a predefined threshold were flagged as a

spike event. The predefined threshold was set as a multiple of the noise-level of the

MER signal. The noise-level could not be directly measured and had to be estimated

from the whole MER signal (noise, spikes and artefacts). For noise-level estimation

we used the mode-based envelope method as proposed by Dolan et al. [51], under

the assumption that the noise of the MER fragment was Gaussian distributed. This

is a reasonable assumption, as the background noise signal is a superposition of

distinct independent signals. This method uses the fact that the envelope, estimated

using the Hilbert transformation, of a band-limited Gaussian noise signal, follows a

Rayleigh distribution. The mode, i.e., the amplitude that occurs most frequently, of

this Rayleigh distribution is exactly equal to the standard deviation of the underlying

Gaussian distribution. This mode provides a reliable noise-level estimate, which is

just very moderately influenced by spikes and high amplitude artefacts [51].

For all MER fragments we used a threshold that was 4.5 times the noise-level esti-

mate. The number of detected spikes should increase upon lowering this threshold;

however, in case of small amplitude spikes, differences in spike waveform between

different neurons are indiscernible, because they are in the order of the noise level.

To obtain the waveform of each detected spike we extracted a data window of 1.2 ms

(25 samples) from the MER fragment, starting 0.4 ms (8 samples) prior to and ending

0.8 ms (16 samples) after the time of the spike event (peak). Subsequently, all spike

waveforms were aligned to their peak at data point 9. Thus we obtained an initial

spike matrix S ǫR
25×n, with n the numbers of spikes. From this spike matrix a re-

sampled spike matrix S ǫR
32×n was calculated in which the following issues were

incorporated.
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Overlapping spikes: different putative neurons may spike almost simultaneously

and their waveforms will then overlap. Overlapping spikes were considered

as outliers and were removed from the spike matrix. To remove overlapping

spikes we ignored spike events that occurred within 1 ms from each other.

Artefacts: it could happen that artefacts exceeded the threshold and were flagged

as spike event. Therefore, an event was only classified as spike if it satisfied

the following constraints:

1. The time between the positive and negative peak of a spike waveform

should not exceed 0.6 ms.

2. The (absolute) amplitude of the negative peak should be at least 0.3 times

the amplitude of the positive peak.

3. Peak amplitude should not be higher than 10 times the threshold.

Misalignment: for the spike waveform analysis it is important that the spikes are

correctly aligned with each other. The peak of the waveform is only reached

for a very short time and therefore the exact moment at which a peak is

reached will in general occur between two consecutive samples. Alignment

of the waveforms to their peak can have a time shift that is a fraction of the

sampling period. To avoid spike misalignments due to insufficient sampling,

peaks were determined from a 4 times upsampled spike waveform, using

cubic splines. After aligning, the interpolated waveforms were resampled to

have 32 samples in a time window of 1.2 ms. In particular, we had 10 samples

before and 21 samples after peak.

Feature extraction

Each column of S represents a time series of the spike waveform and is a point in a

32-dimensional space of raw sample values. The stored waveforms form a cloud of

points in this high-dimensional space. In a high-dimensional space, standard clus-

tering algorithm has the problem to end up in a local minimum. Therefore, to dis-

tinguish between different spike waveforms, the dimensionality of each spike wave-

form was reduced by extracting discriminative features from the spike waveform.

We used a wavelet based dimension reduction method for spike feature extraction

[89, 118, 174]. The discrete wavelet transform gives a time–frequency decomposition

of the spike waveform with optimal resolution in both the time and the frequency do-

mains [174]. Therefore, very localized waveform differences of the different neurons

can be discerned with wavelets. Several studies [89, 118, 163, 174] have shown that

a wavelet-based spike feature extraction method outperforms the commonly used

principal component analysis based method. Especially, when the spike waveforms
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demonstrate high frequency features (sharp edges) or the presence of high recording

noise [163].

We used a fourth-level discrete Haar wavelet transform [129] to decompose each

spike waveform with length 32 into 32 wavelet coefficients (30 detail and 2 approxi-

mation coefficients). Since the wavelet decomposition did not reduce the dimension-

ality of the spike waveform, the Kolmogorov–Smirnov test for normality [172] was

utilized to extract six wavelet coefficients whose distribution over all spike wave-

forms differed most from the normal distribution. This strategy promotes extracting

of wavelet coefficients with multi-modal distribution, thus enhancing the separation

between different clusters (neurons).

Clustering

The 6 extracted wavelet coefficients were used as feature for the clustering step. For

the clustering, a classification expectation maximization algorithm [42] was used, as

implemented in KlustaKwik version 1.7 [81]. The default settings were used, except

for the minimum number of clusters and the maximum number of iterations, which

were set to 3 and 1000, respectively.

After clustering we obtained for each cluster the ordered times of occurrence of

each spike (spike times) in terms of a multiple of the sampling interval (dt). The

sequence of ordered spike times can be considered as a realization of a stochastic

orderly point process. For orderly point process the number of events (spikes) in an

interval of duration dt will take on the value 0 or 1 depending on the occurrence of

a spike [74]. So we could create a spike train, a sequence of zeros and ones with the

same length as the recording, of the ordered spike times.
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spike separation as determined by simultaneous intracellular and extracellular measure-

ments. Journal of Neurophysiology, 84(1):401–414, 2000.

[82] C. Hauptmann and P. A. Tass. Cumulative and after-effects of short and weak coordinated

reset stimulation: a modeling study. Journal of Neural Engineering, 6(1):016004, 2009.

[83] T. Heida, E. Marani, and K. G. Usunoff. The subthalamic nucleus, part II: modelling and simulation

of activity, volume 199 of Advances in Anatomy, Embryology and Cell Biology. Springer Verlag,

London, 2008.

[84] D. N. Hill, S. B. Mehta, and D. Kleinfeld. Quality metrics to accompany spike sorting of

extracellular signals. The Journal of Neuroscience, 31(24):8699–8705, June 2011.

[85] A. L. Hodgkin and A. F. Huxley. A quantitative description of membrane current and its

application to conduction and excitation in nerve. The Journal of Physiology, 117(4):500–544,

1952.

[86] C. D. Holmgren and Y. Zilberter. Coincident spiking activity induces long-term changes in

inhibition of neocortical pyramidal cells. The Journal of Neuroscience, 21(20):8270–8277, 2001.

[87] A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees. Accuracy of clinical diagnosis of id-

iopathic parkinson’s disease: a clinico-pathological study of 100 cases. Journal of Neurology,

Neurosurgery, and Psychiatry, 55(3):181–184, March 1992.

[88] J. R. Huguenard and D. A. McCormick. Simulation of the currents involved in rhythmic

oscillations in thalamic relay neurons. Journal of neurophysiology, 68(4):1373–1383, October

1992.

[89] E. Hulata, R. Segev, and E. Ben-Jacob. A method for spike sorting and detection based on

wavelet packets and shannon’s mutual information. Journal of Neuroscience Methods, 117(1):

1–12, 2002.

[90] M. J. Hurley and P. Jenner. What has been learnt from study of dopamine receptors in parkin-

son’s disease? Pharmacology & Therapeutics, 111(3):715–728, 2006.

[91] E. M. Izhikevich. Dynamical systems in neuroscience: The geometry of excitability and bursting.

MIT press, Cambridge, MA, 2006.

[92] H. Jahnsen and R. Llinás. Electrophysiological properties of guinea-pig thalamic neurones:

an in vitro study. The Journal of Physiology, 349(1):205–226, 1984.

[93] J. Jankovic. Parkinson’s disease: clinical features and diagnosis. Journal of neurology, neuro-

surgery, and psychiatry, 79:368–376, 2008.

[94] F. Javoy, C. Sotelo, A. Herbet, and Y. Agid. Specificity of dopaminergic neuronal degenera-

tion induced by intracerebral injection of 6-hydroxydopamine in the nigrostriatal dopamine

system. Brain Research, 102(2):201–215, 1976.

[95] K. Jellinger. Quantitative changes in some subcortical nuclei in aging, alzheimer’s disease

and parkinson’s disease. Neurobiology of Aging, 8(6):556–561, 1987.

[96] N. Jenkinson and P. Brown. New insights into the relationship between dopamine, beta os-

cillations and motor function. Trends in Neurosciences, 34(12):611–618, 2011.

[97] N. Jenkinson, D. Nandi, R. C. Miall, J. F. Stein, and T. Z. Aziz. Pedunculopontine nucleus

stimulation improves akinesia in a parkinsonian monkey. Neuroreport, 15(17):2621–2624, 2004.

[98] N. Jenkinson, D. Nandi, K. Muthusamy, N. J. Ray, R. Gregory, J. F. Stein, and T. Z. Aziz.

Anatomy, physiology, and pathophysiology of the pedunculopontine nucleus. Movement Dis-

orders, 24(3):319–328, 2009.

[99] D. Joel and I. I. Weiner. The connections of the dopaminergic system with the striatum in rats

and primates: an analysis with respect to the functional and compartmental organization of

the striatum. Neuroscience, 96(3):451–474, 2000.



References 137

[100] G. Jonsson. Chemical neurotoxins as denervation tools in neurobiology. Annual Review of

Neuroscience, 3(1):169–187, 1980.

[101] M. Joshua, S. Elias, O. Levine, and H. Bergman. Quantifying the isolation quality of extracel-

lularly recorded action potentials. Journal of Neuroscience Methods, 163:267–282, 2007.

[102] E. Juergens, A. Guettler, and R. Eckhorn. Visual stimulation elicits locked and induced

gamma oscillations in monkey intracortical- and eeg-potentials, but not in human eeg. Ex-

perimental Brain Research, 129(2):247–259, 1999.

[103] E. R. Kandel, J. H. Schwartz, and T. M. Jessel. Principles of Neural Science. McGraw-Hill, New

York, fourth edition, 2000.

[104] Y. Kaneoke and J. L. Vitek. Burst and oscillation as disparate neuronal properties. Journal of

Neuroscience Method, 68(2):211–223, 1996.

[105] Y. Kang and S. Kitai. Electrophysiological properties of pedunculopontine neurons and their

postsynaptic responses following stimulation of substantia nigra reticulata. Brain Research,

535:79–95, 1990.

[106] A. Kepecs, M. C. W. van Rossum, S. Song, and J. Tegner. Spike-timing-dependent plasticity:

common themes and divergent vistas. Biological Cybernetics, 87(5):446–458, 2002.

[107] M. C. Keuken, H. B. M. Uylings, S. Geyer, A. Schäfer, R. Turner, and B. U. Forstmann. Are
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Summary

Parkinson’s disease (PD) is characterized by the cell death of neuronal brain cells

producing the signaling molecule dopamine. Due to resulting shortage of dopamine,

the dynamics of neuronal cells changes, most notably abnormal synchronization of

neuronal activity. Such changes complicate the information processing in the brain,

resulting in symptoms such as tremor, rigidity and slowness of movement.

Deep brain stimulation (DBS) is a surgical treatment where an electrode is im-

planted to stimulate a specific brain region. DBS is a well-established treatment when

medication is no longer effective for PD. DBS is meant to desynchronize pathologi-

cal oscillations, as they are thought to be the main cause of the symptoms. Despite

the high clinical success rate, the way how the pathological activity originates in the

brain and how DBS can compensate it are still unresolved questions. Computational

modeling is a valuable tool for finding answers to these questions.

In the first part of the thesis, computational models are employed in order to get

insight in new proposed stimulation therapies for PD. It is demonstrated that stimu-

lation of the pedunculopontine nucleus can eliminate the pathological activity from

the entire network model. It is suggested that short-duration desynchronizing stim-

ulation protocols may also disrupt pathological synchronous activity. The results of

simulation show that plasticity within the globus pallidus pars externa might be an

explanation for this claim.

The second half of this thesis focuses on the analysis of single-unit recordings of

subthalamic nucleus (STN) cells obtained from PD patients and the acquisition of

local field potentials (LFP) in parkinsonian rats. Although it was possible to record

clean LFP data, using these data in combination with spiking neuron models is not

straightforward. It has been shown that the firing behavior of single units is differ-

ent in the sensorimotor part of the STN than in other parts of the STN. Postopera-

tive evaluation of target stimulation areas in the investigated PD patients with DBS

shows a significant preference for the sensorimotor part of the STN. Therefore, anal-

ysis of the firing behavior may help to discriminate the STN sensorimotor part for

the optimal placement of the DBS electrode.
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Samenvatting

De ziekte van Parkinson wordt gekenmerkt door het afsterven van neurale hersen-

cellen die de stof dopamine produceren. Omdat deze stof wordt gebruikt voor de

communicatie tussen hersencellen, zal een tekort aan dopamine de informatiever-

werking in de hersenen verstoren. Wanneer een groot deel van deze hersencellen is

afgestorven kan dit leiden tot een aantal symptomen, waaronder een tremor, stijf-

heid en traagheid in het bewegen. Op dit moment denkt men dat het dopamine

tekort leidt tot synchrone activiteit van neurale hersencellen, wat zich vervolgens uit

in de bovengenoemde symptomen.

Wanneer parkinsonpatiënten geen baat meer hebben bij medicatie, gaat men soms

over tot operatief ingrijpen om de motorische symptomen te verminderen. Een voor-

beeld hiervan is diepe hersenstimulatie (DHS). Bij deze behandeling wordt een sti-

mulator ingebracht die elektrische pulsjes toedient aan specifieke gebieden in het

brein. Op deze manier kan de pathologische activiteit in deze gebieden desynchro-

niseren. Ondanks de overtuigende klinische resultaten, blijven vragen over het ont-

staan van pathologische, synchrone activiteit in het brein en de precieze werking van

DHS nog onbeantwoord. Een wiskundig model is een uitermate geschikt middel om

antwoord op deze elementaire vragen te krijgen.

In het eerste deel van dit proefschrift worden computermodellen gebruikt om in-

zicht te krijgen in recent voorgestelde DHS therapieën voor de ziekte van Parkinson.

De hersengebieden waar DHS momenteel wordt toegepast hebben nauwelijks in-

vloed op de balansproblemen die bepaalde patiënten in een latere stadium onder-

vinden. Met een relevant netwerk model van de delen in het brein wordt bestu-

deerd of het stimuleren van de Pedunculopontine nucleus (PPN) een positief effect

kan hebben voor deze patiënten. Simulaties tonen aan dat het met stimulatie van

de PPN mogelijk is om de pathologische synchrone activiteit teniet te doen. Daar-

naast wordt gesuggereerd dat kortstondige desynchroniserende stimulatie in plaats

van continue stimulatie van de hersengebieden de pathologische synchrone activi-

teit ook kan verstoren. De resultaten van simulaties laten zien dat plasticiteit binnen

de Globus Pallidus pars externa een mogelijke verklaring is voor dit effect.
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148 Samenvatting

Het tweede deel van het proefschrift richt zich op het verkrijgen en analyseren van

metingen om zo het voorgaande modeleerwerk te ondersteunen. In het bijzonder

worden extracellulaire micro-elektrode metingen bestudeerd van individuele cellen

in de Subthalamische nucleus (STN), welke zijn verkregen tijdens de DHS opera-

tie bij parkinsonpatiënten. Tevens worden de mogelijkheden geı̈nventariseerd om

lokale veld potentialen te meten in ratten met parkinsonisme. Het bleek inderdaad

mogelijk om de lokale veld potentialen van meerdere hersenkernen simultaan te me-

ten. Deze metingen waren echter ontoereikend om bepaalde analyses te doen. Daar-

entegen leverde de analyse van afzonderlijke cel metingen belangrijke en nieuwe

inzichten. Ze tonen aan dat het vuurgedrag in het sensorimotorische deel van de

STN anders is dan in de andere delen van de STN. Postoperatieve evaluatie naar het

meest effectieve klinisch gebied voor stimulatie laat een significante voorkeur zien

voor het sensorimotorische deel van de STN. Zodoende blijkt dat het analyseren van

het vuurgedrag tijdens de operatie een belangrijke bijdrage kan leveren bij de iden-

tificatie van het sensorimotorische deel van de STN. Op deze manier kan de DHS

elektrode optimaal geplaatst worden.
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wil ik Toon en José, Bjorn en Annemiek en Lise bedanken voor hun interesse in mijn

onderzoek, mijn ouders, Petra en Johan en mijn neefje en nichtjes bedanken voor

hun steun.

En natuurlijk wil ik mijn lieve Kim bedanken voor al haar liefde en steun en, in

de laatste maanden, voor al haar geduld. Ik beloof dat ik nu veel meer tijd voor jou

zal vrijmaken.

Marcel, februari 2013



About the author

Marcel Lourens was born in Deventer, The Netherlands on November 30, 1980. In

1999, he obtained his VWO diploma at the Revius in Deventer. From September 2000

until August 2007 he studied Biomedical Engineering at the Eindhoven University of

Technology. As part of this study, he did an internship at Radi Medical Systems AB

in Uppsala, Sweden. He evaluated the possibility to use their PressureWire sensor as

a flow sensor. The research for his master thesis “A mathematical model for platelet

adhesion and activation: application to cerebral arteries” was performed at the Car-

diovascular Biomechanics group under the supervision of dr.ir. P.H.M. Bovendeerd

and prof.dr.ir. F.N. van de Vosse. During his study, he also followed a course on lab-

oratory animal science and received the ’Article 9’ certificate. In January 2008, he

started his PhD research under supervision of prof.dr. S.A. van Gils in the group

of Applied Analysis and Mathematical Physics at the University of Twente, The

Netherlands. Part of this PhD research was performed at the Academic Medical

Center (AMC) in Amsterdam and the Donders Institute for Brain, Cognition and

Behaviour at the Radboud University Nijmegen. The result of his PhD research is

contained in this thesis. Since March of this year, Marcel is working as a post-doctoral

researcher at AMC and Sapiens Steering Brain Stimulation.

151



ISBN: 978-90-365-3507-6


	Front_cover
	thesis
	Back_cover

